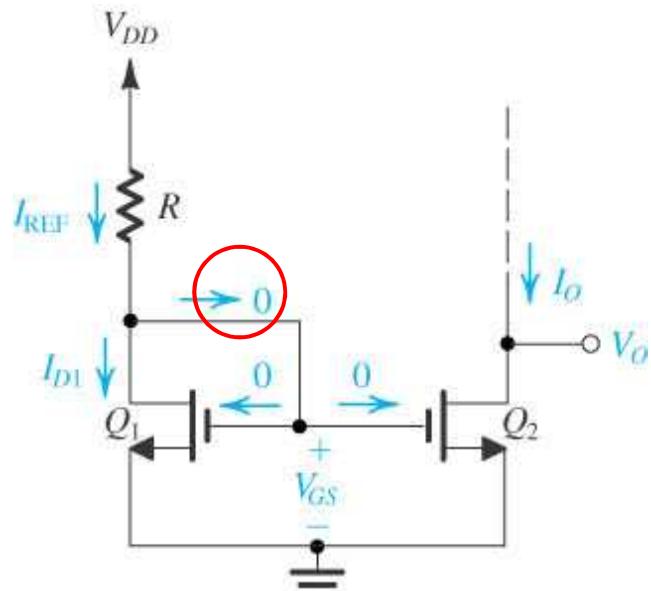

Microelectronic Circuits II

Ch 6 : Building Blocks of Integrated-Circuit Amplifier

6.4 IC Biasing

6.5 Current-Mirror Circuits


IC Biasing-Current sources, current mirrors & current-steering circuits

- Biasing in integrated-circuit design

- biasing in the IC by *constant-current source*
- **current steering** : constant dc current (**reference current**) at one location & *replicated* current source at various other locations
- utilizes a precision resistor *external* to the chip
- bias currents *track* each other under changes in power-supply voltage or in temperature
- circuit building block for *bias* design & *load* element of IC amplifiers

- Basic MOSFET Current Source

- Drain of Q_1 is shorted to its gate \rightarrow saturation mode

$$I_{D1} = \frac{1}{2} k_n \left(\frac{W}{L} \right)_1 (V_{GS} - V_{tn})^2$$

- R : outside of IC chip

$$I_{D1} = I_{REF} = \frac{V_{DD} - V_{GS}}{R}$$

- Q_2 w/ the same V_{GS} as Q_1 , assume in saturation

$$I_O = I_{D2} = \frac{1}{2} k_n \left(\frac{W}{L} \right)_2 (V_{GS} - V_{tn})^2$$

Basic MOSFET Current Source

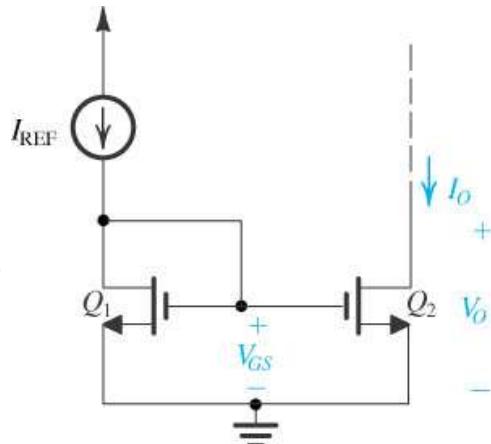
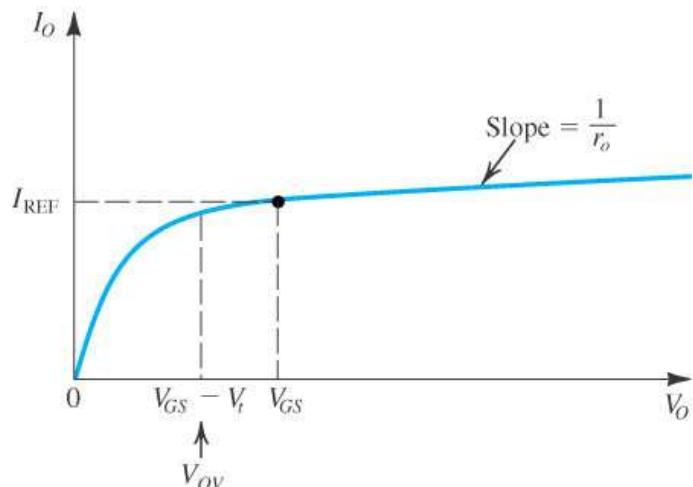
- Relation between I_O and I_{REF}

- I_O/I_{REF} = ratio of the aspect ratios of the transistor & determined by geometries

$$\frac{I_O}{I_{REF}} = \frac{(W/L)_2}{(W/L)_1} \quad \text{current gain or current transfer ratio}$$

- **Current mirror** : identical Q_1 & $Q_2 \rightarrow I_O = I_{REF}$
replicates or mirrors the reference current in the output terminal

- Effect of V_O on I_O



- condition for Q_2 saturation $V_O \geq V_{GS} - V_t \quad V_O \geq V_{ov}$

- channel length modulation effect

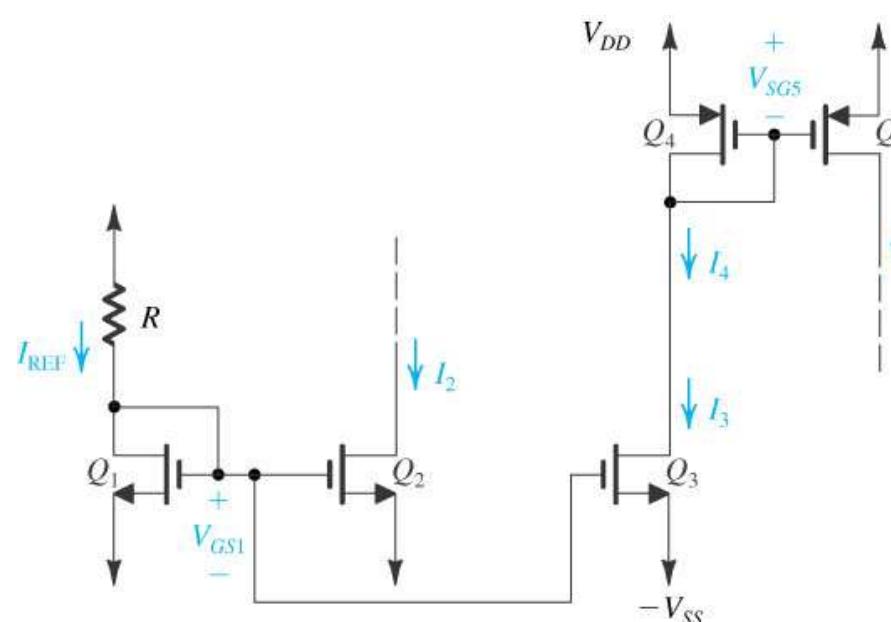
- * I_O at $Q_2 = I_{REF}$ at Q_1 at the same V_{DS} ($V_O = V_{GS}$)

Basic MOSFET current mirror

- * if $V_O \uparrow$, then $I_O \uparrow$ by the incremental output resistance r_{o2} of Q_2

- * Finite output resistance R_o of the current mirror

$$R_o \equiv \frac{\Delta V_o}{\Delta I_o} = r_{o2} = \frac{V_{A2}}{I_o}$$


V_{A2} : Early voltage of Q_2

$$I_O = \frac{(W/L)_2}{(W/L)_1} I_{REF} \left(1 + \frac{V_O - V_{GS}}{V_{A2}} \right)$$

MOS Current-Steering Circuits

- Current-steering circuit

- constant currents are *replicated* for the various amplifier stages in an IC

- current mirror by PMOS Q_4 & Q_5

$$I_5 = I_4 \frac{(W/L)_5}{(W/L)_4} \quad \text{where, } I_4 = I_3$$

$$V_{D5} \leq V_{DD} - |V_{ov5}| \quad \text{to keep } Q_5 \text{ in saturation}$$

Q_2 pulls its current I_2 from a load \rightarrow current sink

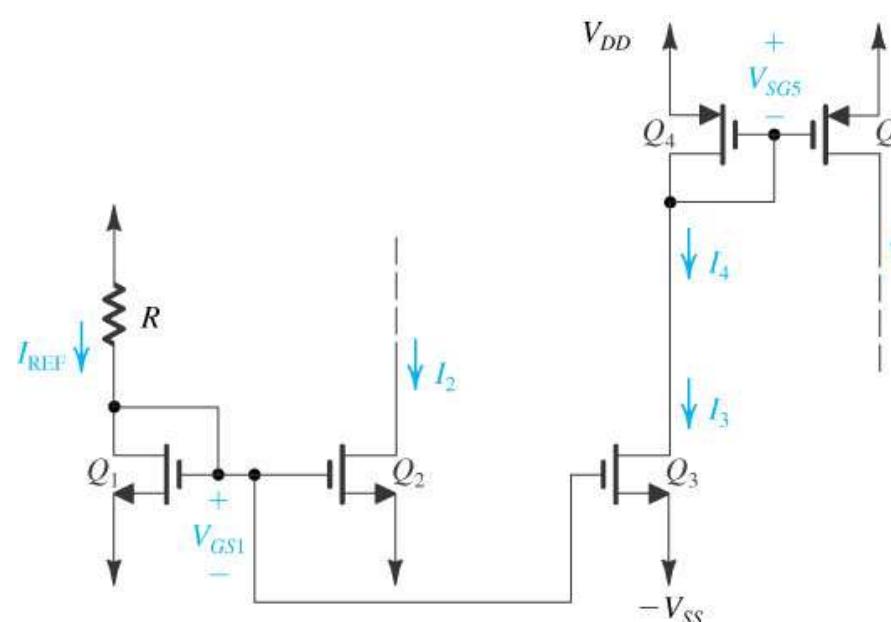
Q_5 pushes its current I_5 into a load \rightarrow current source

- I_{REF} by Q_1 & R
- Q_1, Q_2 & $Q_3 \rightarrow$ two-output current mirror

$$I_2 = I_{REF} \frac{(W/L)_2}{(W/L)_1} \quad I_3 = I_{REF} \frac{(W/L)_3}{(W/L)_1}$$

- Saturation region at Q_2 & Q_3

$$V_{D2}, V_{D3} \geq -V_{SS} + V_{GS1} - V_{tn}$$


$$V_{D2}, V_{D3} \geq -V_{SS} + V_{ov1}$$

drains of Q_2 & Q_3 must remain higher than $-V_{SS}$ by at least the overdrive voltage (0.1~0.3V)

MOS Current-Steering Circuits

- Current-steering circuit

- constant currents are *replicated* for the various amplifier stages in an IC

- current mirror by PMOS Q_4 & Q_5

$$I_5 = I_4 \frac{(W/L)_5}{(W/L)_4} \quad \text{where, } I_4 = I_3$$

$$V_{D5} \leq V_{DD} - |V_{ov5}| \quad \text{to keep } Q_5 \text{ in saturation}$$

Q_2 pulls its current I_2 from a load \rightarrow current sink

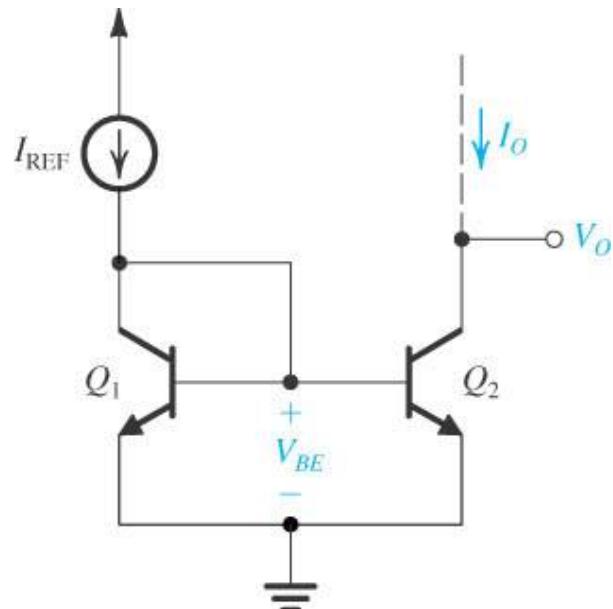
Q_5 pushes its current I_5 into a load \rightarrow current source

- I_{REF} by Q_1 & R
- Q_1, Q_2 & $Q_3 \rightarrow$ two-output current mirror

$$I_2 = I_{REF} \frac{(W/L)_2}{(W/L)_1} \quad I_3 = I_{REF} \frac{(W/L)_3}{(W/L)_1}$$

- Saturation region at Q_2 & Q_3

$$V_{D2}, V_{D3} \geq -V_{SS} + V_{GS1} - V_{tn}$$


$$V_{D2}, V_{D3} \geq -V_{SS} + V_{ov1}$$

drains of Q_2 & Q_3 must remain higher than $-V_{SS}$ by at least the overdrive voltage (0.1~0.3V)

BJT Circuits

- Basic BJT current mirror

- nonzero base current of the BJT (or, finite β) \rightarrow error in the current transfer ratio (CTR)
- CTR by the relative areas of the emitter-base junctions of Q_1 & Q_2

- 1st case : sufficiently high β , neglected I_B

$\rightarrow I_{REF}$ passes $Q_1 \rightarrow V_{BE}$ of $Q_1 = V_{BE}$ of Q_2

\rightarrow if $Q_1 = Q_2$, same EBJ area & scale current I_S

$$I_O = I_{REF}$$

: active mode at $Q_2 :: V_O > 0.3V + V_E$ of Q_2

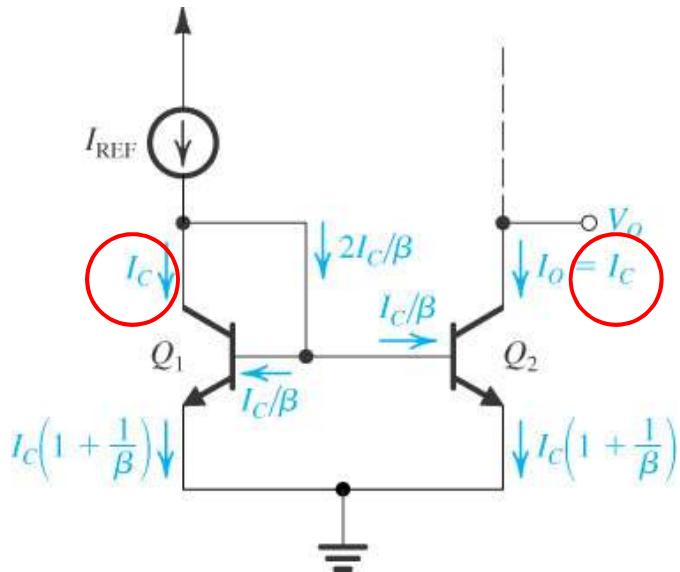
\rightarrow area of the EBJ of Q_2 is m times that of Q_1

$$I_O = mI_{REF}$$

- Current transfer ratio

$$I_C = I_S e^{V_{BE}/V_T}$$

$$I_C = \alpha I_E \quad I_C = \beta I_B$$


$$\frac{I_O}{I_{REF}} = \frac{I_{S2}}{I_{S1}} = \frac{\text{Area of EBJ of } Q_2}{\text{Area of EBJ of } Q_1}$$

If the area ratio m is an integer, one can think of Q_2 as equivalent to m transistors, each matches to Q_1 and connected in parallel

BJT Circuits

- 2nd case : effect of finite β on the CTR

- case of CTR is unity: Q_1 & Q_2 are matched and same V_{BE} \rightarrow equal collector currents
- node equation at the collector of Q_1

$$I_{REF} = I_C + 2I_C/\beta = I_C \left(1 + \frac{2}{\beta}\right)$$

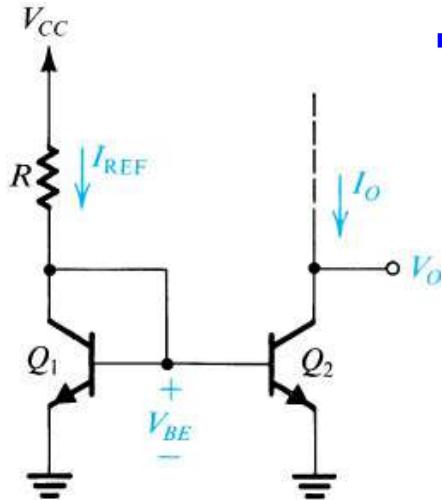
since $I_O = I_C$, the CTR is

$$\frac{I_O}{I_{REF}} = \frac{I_C}{I_C \left(1 + \frac{2}{\beta}\right)} = \frac{1}{1 + \frac{2}{\beta}}$$

$$\frac{I_O}{I_{REF}} = \frac{m}{1 + \frac{m+1}{\beta}}$$

When
 $I_{S2} = mI_{S1}$

as $\beta \rightarrow \infty$, $I_O/I_{REF} \rightarrow$ unity
 $\beta = 100$ results in a 2% error in the CTR


- BJT mirror has a finite output resistance R_o

$$R_o \equiv \frac{\Delta V_o}{\Delta I_o} = r_{o2} = \frac{V_{A2}}{I_o} \quad \text{where } V_{A2} \& r_{o2} : \text{Early voltage \& output resistance}$$

- CTR errors by the finite β & the finite R_o
- Error by Early effect = 0 for $V_O = V_{BE}$

$$I_o = I_{REF} \left(\frac{m}{1 + \frac{m+1}{\beta}} \right) \left(1 + \frac{V_o - V_{BE}}{V_{A2}} \right)$$

BJT Current-steering Circuits

▪ Simple Current Sink

- reference current : $I_{REF} = \frac{V_{CC} - V_{BE}}{R}$

V_{BE} : corresponding to the desired I_{REF}

$$I_o = \frac{I_{REF}}{1 + (2/\beta)} \left(1 + \frac{V_o - V_{BE}}{V_A} \right)$$

- Output resistance : $R_o = r_{o2} \cong \frac{V_A}{I_o} \cong \frac{V_A}{I_{REF}}$

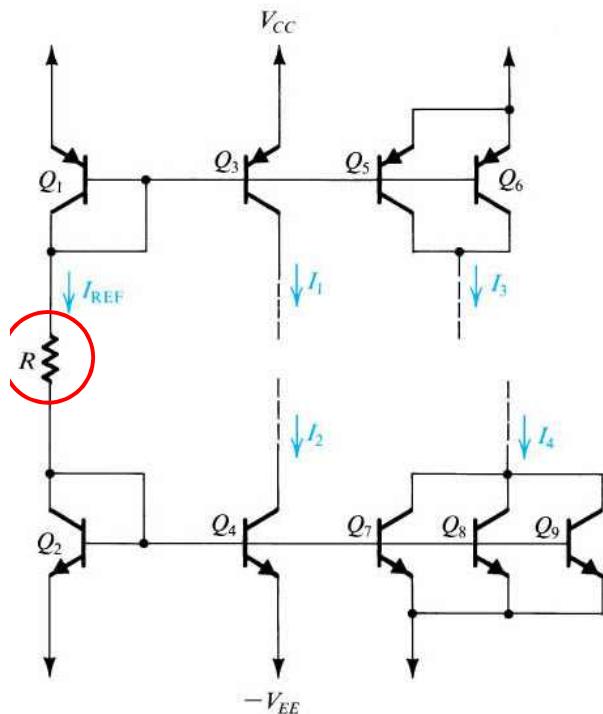
▪ Current Steering

- generates bias currents for different amplifier stages in an IC
- dc reference current I_{REF}

$$I_{REF} = \frac{V_{CC} + V_{EE} - V_{EB1} - V_{BE2}}{R}$$

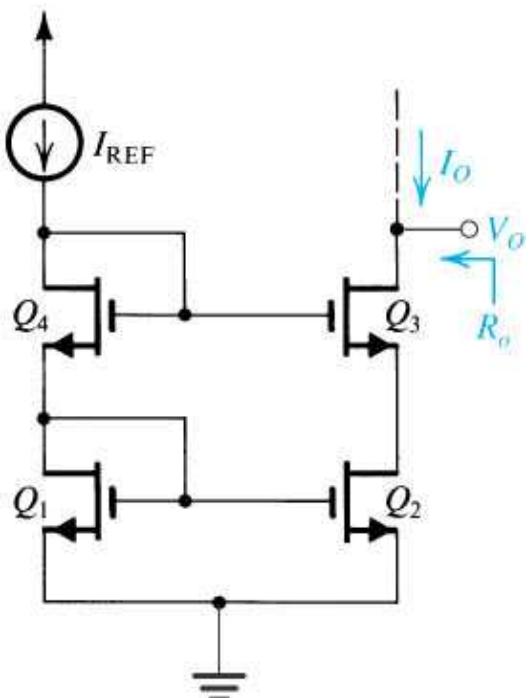
- sufficiently high β case, neglected I_B & neglected *Early effect*

* Q_3 : current mirror of $Q_1 \rightarrow I_1 = I_{REF}$


- active mode at Q_3 (*source*) : V_{C3} of $Q_3 < V_{CC} - 0.3V$

* Q_5 & Q_6 in parallel $\rightarrow I_3 = 2I_{REF}$

* Q_4 : mirror of $Q_2 \rightarrow I_2 = I_{REF}$


- active mode at Q_4 (*sink*) : V_{C4} of $Q_4 > -V_{EE} + 0.3V$

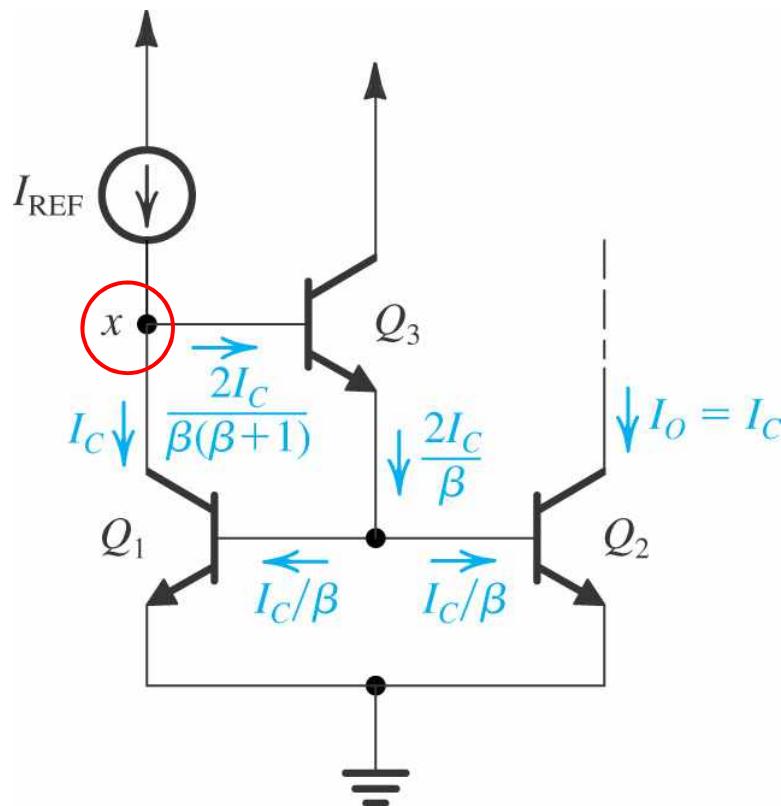
* Q_7, Q_8 & Q_9 in parallel $\rightarrow I_4 = 3I_{REF}$

Current-Mirror circuits w/ improved performance

- Constant-current source : biasing & active load
 - Performance parameters of current mirrors
 - accuracy of the current transfer ratio of the mirror and output resistance of the current source*
 - accuracy of the current transfer ratio suffers from the *finite β* of BJT
 - output resistance is limited to r_o of MOSFET & BJT
- MOS & bipolar current mirrors with more accurate current transfer ratios and higher output resistances are required

- **Cascode MOS Mirrors**

- diode-connected Q_1 → mirror $Q_1 - Q_2$
- diode-connected Q_4 → bias voltage for gate of the cascode transistor Q_3
- Output resistance R_o of cascode transistor Q_3


$$R_o \approx g_{m3} r_{o3} r_{o2}$$

→ cascading raises R_o by the factor $(g_{m3} r_{o3})$, which is the intrinsic gain of the cascode transistor

- Cascode current mirror consumes a relatively large portion of *the steadily shrinking supply voltage V_{DD}* .
- Minimum voltage required across the output of the cascode mirror = $V_t + 2V_{OV}$ because gate of Q_3 is at $2V_{GS} = 2V_t + 2V_{OV} \rightarrow 1V$ or so

A bipolar Mirror with Base-current Compensation

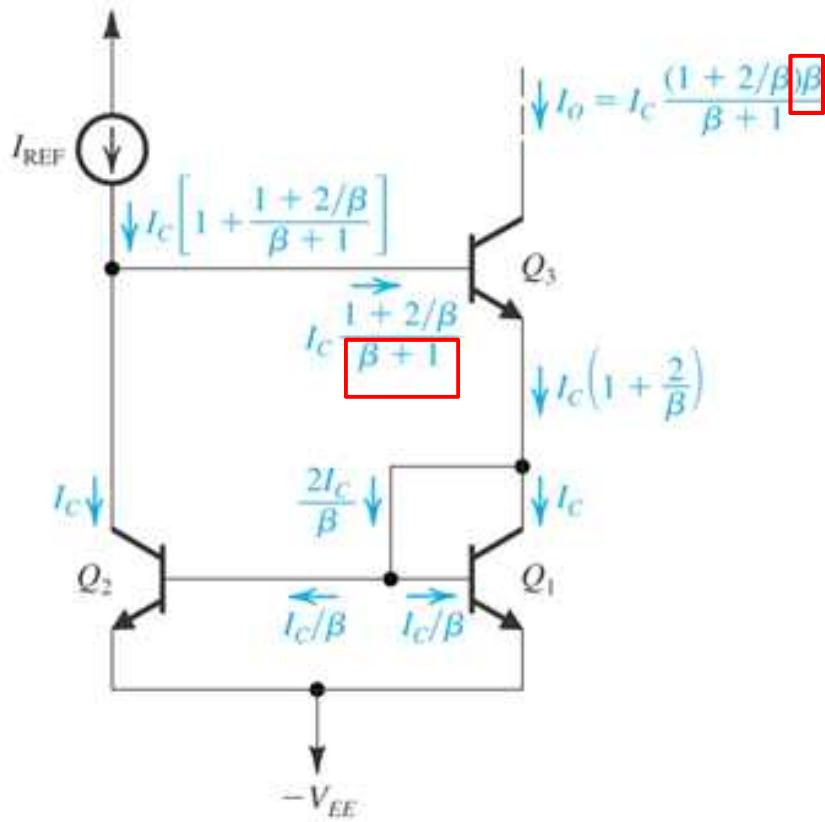
- Bipolar current mirror with a current transfer ratio that is much less dependent on β
 - Reduced dependence of β by including Q_3
 - Emitter of Q_3 supplies the base currents of Q_1 & Q_2
 - Sum of the base currents is divided by $(\beta+1)$ → much smaller error current between I_{REF} & $I_C = I_O$

$$I_E = I_B + I_C = (1 + \beta)I_B$$

▪ Detailed analysis

- $Q_1 - Q_2$ are matched → equal collector currents, I_C
- Node equation at the node labeled x :

$$I_{REF} = I_C \left[1 + \frac{2}{\beta(\beta+1)} \right]$$


$$\text{Since } I_O = I_C$$

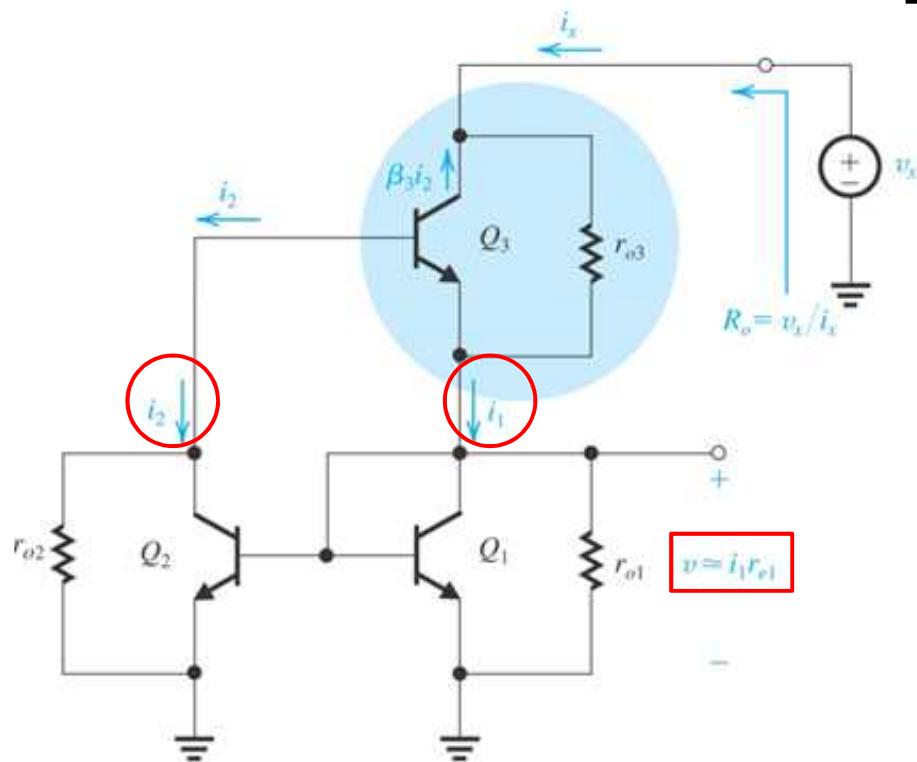
$$\frac{I_O}{I_{REF}} = \frac{1}{1 + 2/(\beta^2 + \beta)} \approx \frac{1}{1 + 2/\beta^2}$$

- error due to finite β : $2/\beta$ in the simple mirror → $2/\beta^2$
- *output resistance* remains approximately *equal* to that of the simple mirror
- When node x is connected to the power supply V_{CC} through a resistance R :

$$I_{REF} = \frac{V_{CC} - V_{BE1} - V_{BE3}}{R}$$

Wilson Current Mirror

$$I_E = I_B + I_C = (1 + \beta)I_B \quad I_C = \beta I_B$$


- **Wilson Mirror** : both *reducing the β dependence* and *increasing the output resistance*
 - Effect of finite β on the current transfer ratio :
assume Q_1 & Q_2 conduct equal collector currents

$$\frac{I_O}{I_{REF}} = \frac{I_C \left(1 + \frac{2}{\beta}\right) \beta / (\beta + 1)}{I_C \left[1 + \left(1 + \frac{2}{\beta}\right) / (\beta + 1)\right]} = \frac{\beta + 2}{\beta + 1 + \frac{\beta + 2}{\beta}} = \frac{\beta + 2}{\beta + 2 + \frac{2}{\beta}}$$

$$= \frac{1}{1 + \frac{2}{\beta(\beta + 2)}} \approx \frac{1}{1 + 2/\beta^2}$$

- Collector-to-emitter voltage of Q_1 & Q_2 are not equal
→ a current offset or a systematic error
→ solved by adding a *diode-connected transistor* in series with the collector of Q_2 → MOS version
- Wilson mirror is *preferred* over the cascode circuit because the latter has the same dependence on β as the simple mirror

Wilson Current Mirror

▪ Output resistance of Wilson mirror

- set $I_{REF} = 0$ & apply a test voltage v_x to the output node

$$R_o = v_x / i_x$$

- direct analysis by “pulled r_o out” of each transistor

$$Q_3 \text{ as a supernode: } i_1 + i_2 = i_x$$

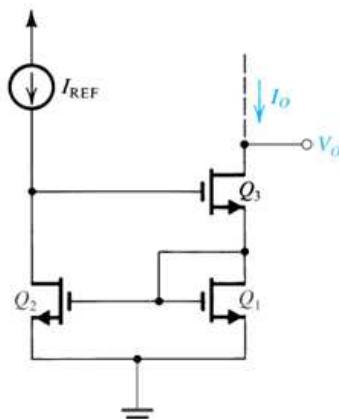
$$\text{by the action of current mirror } Q_1 - Q_2: i_2 \sim i_1 = i_x/2$$

i_2 flows into the base of $Q_3 \rightarrow$ collector current $\beta_3 i_2$

$$\text{current through } r_{o3} \rightarrow i_x + \beta_3 i_2 = i_x + \beta_3(i_x/2) = i_x(\beta_3/2 + 1)$$

voltage between the collector of Q_3 and ground = sum of the voltage drop across r_{o3} and the voltage v across Q_1

$$v_x = i_x \left(\frac{\beta_3}{2} + 1 \right) r_{o3} + i_1 r_{e1} = i_x \left(\frac{\beta_3}{2} + 1 \right) r_{o3} + \left(\frac{i_x}{2} \right) r_{e1}$$


Since $r_o \gg r_e$ & $\beta_3 \gg 2$,

$$v_x \approx i_x \left(\frac{\beta_3}{2} \right) r_{o3} \quad \Rightarrow \quad R_o = \beta_3 r_{o3} / 2$$

- $\beta_3/2$ times higher output resistance than that of Q_3 alone = result of the *negative feedback* obtained by feeding the collector current of Q_2 (i_2) back to the base of Q_3
- The feedback *increases* the current through r_{o3} to approximately $\beta_3 i_x/2$, and thus the voltage across r_{o3} and the output resistance increase by the same factor, $\beta_3/2$.

CNU EE - The factor $\frac{1}{2}$ is because only half of i_x is mirrored back to the base of Q_3

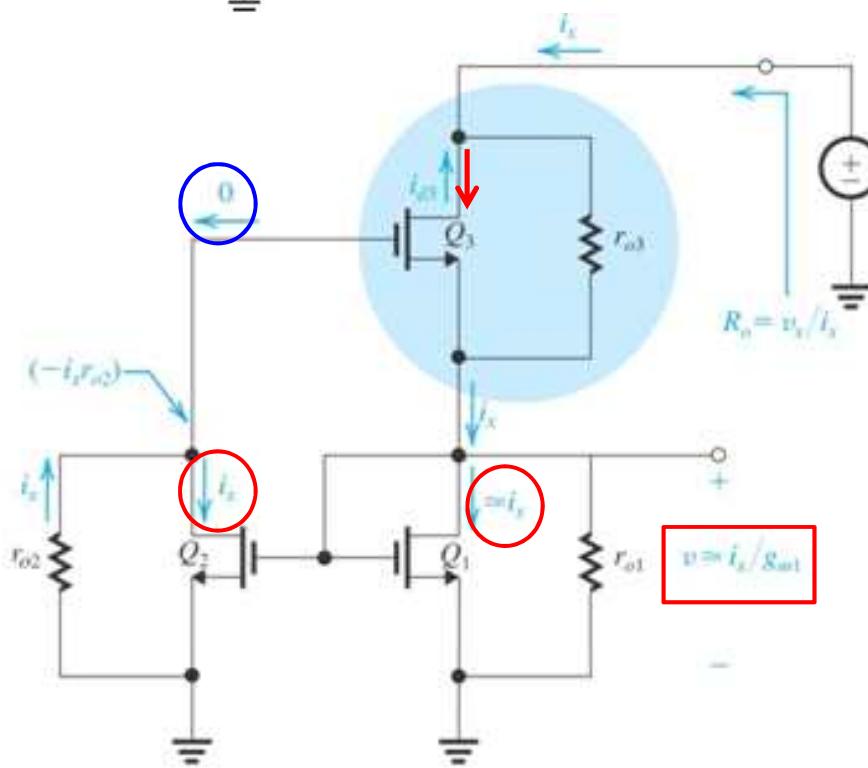
Wilson MOS Mirror

- MOS version of the Wilson mirror : enhanced output resistance but no β error to reduce like BJT version

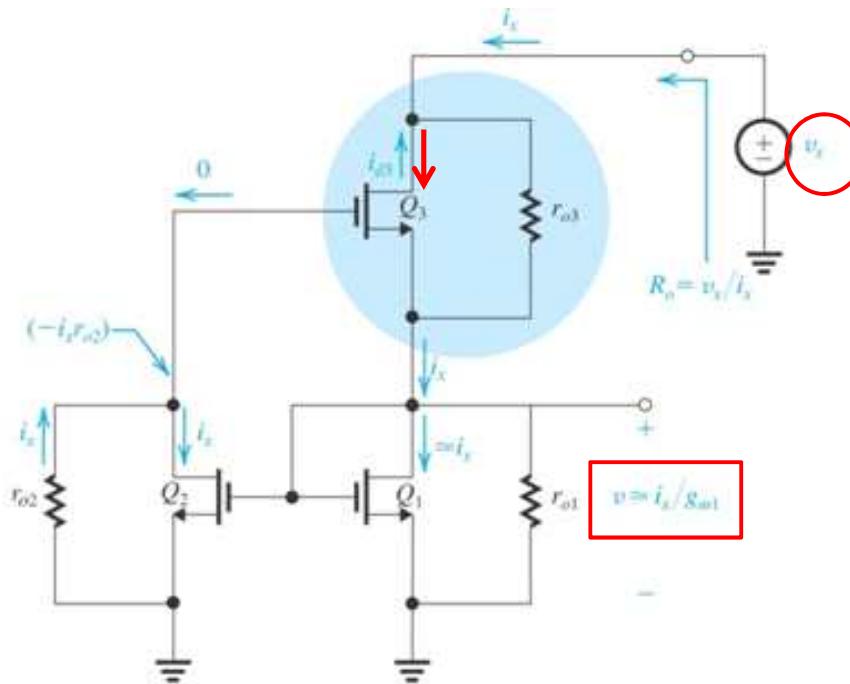
- **Output resistance** : $I_{REF}=0$, and apply a test voltage v_x

$$R_o = v_x/i_x$$

direct analysis by “pulled r_o out” of each transistor
input current of $Q_1 - Q_2$, mirror = i_x


Most of i_x flows in the drain proper of $Q_1 \rightarrow v \sim i_x/g_{m1}$

Current-mirror action of $(Q_1, Q_2) \rightarrow i_x$ flows through the drain proper of Q_2


Since drain current of $Q_2 = 0$, all of i_x flows through $r_{o2} \rightarrow$ drain voltage of $Q_2 = -i_x r_{o2} \rightarrow$ voltage fed back to the gate of Q_3

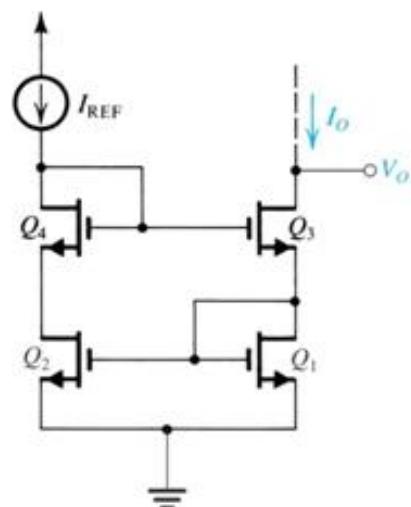
Drain current of O_3 :

$$i_{d3} = g_{m3}v_{gs3} = g_{m3}(v_{g3} - v_{s3}) \\ = g_{m3}(-i_x r_{o2} - i_x/g_{m1}) \approx -(g_{m3} r_{o2}) i_x$$

Wilson MOS Mirror

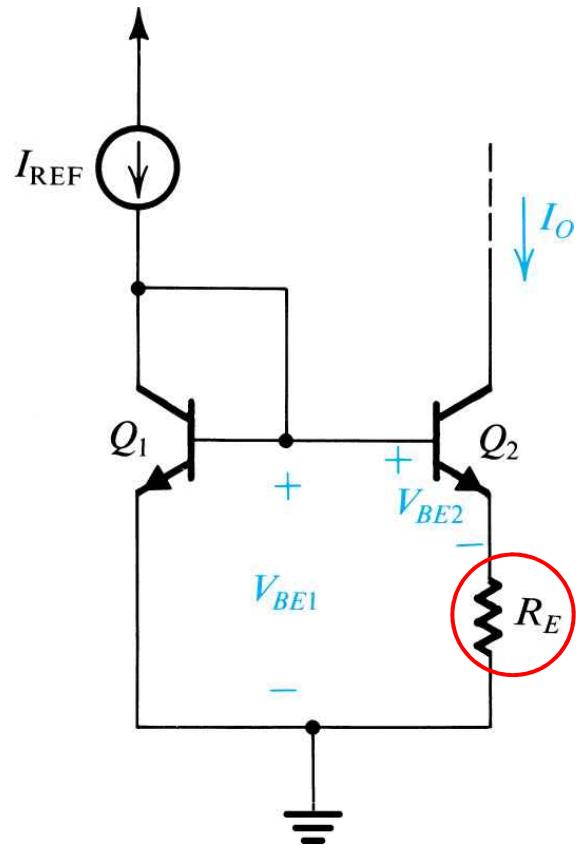
A node eq. at the drain of $Q_3 \rightarrow$ current through r_{o3} :

$$(i_x - i_{d3}) = i_x + g_{m3}r_{o2}i_x \sim g_{m3}r_{o2}i_x$$


v_x = sum of the voltage drop across r_{o3} & voltage v across Q_1 :

$$v_x = g_{m3} r_{o2} i_x r_{o3} + v = (g_{m3} r_{o3} r_{o2}) i_x + (i_x / g_{m1})$$

$$\approx g_{m3} r_{o3} r_{o2} i_x$$


$$R_o = \frac{v_x}{i_x} = (g_{m3}r_{o3})r_{o2}$$

Wilson MOS mirror : increase of output resistance by a factor of $(g_{m3}r_{o3})$ = identical result in the cascode mirror
 Increase in $R_o \rightarrow$ a negative feedback result obtained by connecting the drain of Q_2 to the gate of Q_3

(c) modified circuit to balance the two branches of the mirror and thus avoid the systematic current error resulting from the difference in V_{DS} between Q_1 and Q_2

Widlar Current Source

A resistor R_E is included in the emitter lead of Q_2 . Neglecting base currents, and Q_1 & Q_2 are matched :

$$V_{BE1} = V_T \ln \left(\frac{I_{REF}}{I_S} \right), \quad V_{BE2} = V_T \ln \left(\frac{I_O}{I_S} \right)$$

$$V_{BE1} - V_{BE2} = V_T \ln \left(\frac{I_{REF}}{I_O} \right)$$

From the circuit :

$$V_{BE1} = V_{BE2} + I_Q R_E$$

$$\triangleright \quad I_O R_E = V_T \ln \left(\frac{I_{REF}}{I_O} \right)$$

- Widlar circuit allows the generation of *a small constant current* using relatively *small resistors*. → considerable savings in chip area.
- *High output resistance* due to the *emitter-degeneration resistance* R_E

$$R_{out} \approx [1 + g_m(R_E \parallel r_\pi)] r_o$$