
System Call Parameter PassingSystem Call Parameter Passing

Often, more information is required when designing system call
I f ti i di t OS d t f t llInformation varies according to OS and types of system call

Three general methods used to pass parameters to the OSg p p
Simplest: pass the parameters in registers

In some cases, may be more parameters than registers

Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

Parameters are stored in other places, such as a block or table,
in memory, and the address of block or table is passed as a y p
parameter in a register (next slide)

This approach taken by Linux and Solaris

2.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Parameter Passing via TableParameter Passing via Table

X is not the actual value but the address.

2.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Types of System CallsTypes of System Calls

Categories are similar to categories of library functions

Process control
Create terminate allocate/free memoryCreate, terminate, allocate/free memory

File management
Create/delete, open/close, read/write, p ,

Device management
Request/release, read/write

Information maintenance
Get/set the time/date, get system data

CommunicationsCommunications
Create/connect communication connection, send/receive

2.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Types of System CallsTypes of System Calls

2.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

System ProgramSystem Program

Provides a convenient environment of program development and execution
Some of them are simply user interfaces to system calls; others areSome of them are simply user interfaces to system calls; others are
considerably more complex

The followings are six system program categories

File management - Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories

Status information
Some ask the system information - date, time, amount of available
memory, disk space, number of usersmemory, disk space, number of users
Others provide detailed performance, logging, and debugging
information
Typically, these programs provide formatted output and print the output
t th t i l th t t d ito the terminal or other output devices
Some systems implement a registry - used to store and retrieve
configuration information

2.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

System Program (cont’d)System Program (cont’d)

File modification
Text editors may be available to create and modify filesText editors may be available to create and modify files
Special commands to search contents of files or perform
transformations of the text to other types

Programming-language support - Compilers, assemblers, debuggers and
interpreters are sometimes provided

P l di d ti Ab l t l d l t bl l dProgram loading and execution- Absolute loaders, relocatable loaders,
linkage editors, and overlay-loaders, debugging systems for higher-level
and machine language

Communications - Provide the mechanism for creating virtual connections
among processes, users, and computer systems

Allow users to send messages to another’s screens, browse web
pages send electronic-mail messages log in remotely transfer filespages, send electronic mail messages, log in remotely, transfer files
from one machine to another

2.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Operating System Design and ImplementationOperating System Design and Implementation

Design and Implementation of OS is not “solvable”, but some
approaches have proven “successful”approaches have proven successful
Internal structure of different Operating Systems can vary widely
Start by defining goals and specifications y g g p
Affected by the choice of hardware, type of system

User goals and System goals
User goals – operating system should be convenient to use,
easy to learn reliable safe and fasteasy to learn, reliable, safe, and fast
System goals – operating system should be easy to design,
implement, and maintain, as well as efficient, flexible, reliable,
and error freeand error-free

2.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Operating System Design and Implementation (Cont.)Operating System Design and Implementation (Cont.)

Important principle to separate
Policy: What will be done?Policy: What will be done?
Mechanism: How to do it?

Flexibility!
Mechanisms determine how to do something policies decide what will beMechanisms determine how to do something, policies decide what will be
done

The separation of policy from mechanism is a very important principle,
it allows maximum flexibility.

Example
CPU timer construction

Policy : How long is the timer to be set?Policy : How long is the timer to be set?
Mechanism : Detailed various timer construction methods

Priority Management
Policy : Priority decisionPolicy : Priority decision
Mechanism : Detailed Control method for handling priority

2.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Operating System StructureOperating System Structure

Simple Structurep

Layered Approach

Microkernel

Monolithic

Module

2.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Operating System StructureOperating System Structure

Simple Structurep
MS-DOS – written to provide the most functionality in the least
space

N t di id d i t d lNot divided into modules
Although MS-DOS has some structure, its interfaces and levels
of functionality are not well separated

Layered Approach
The operating system is divided into a number of layers (levels)
Each is built on top of the nearest lower layers.
The bottom layer (layer 0) is the hardware; the highest (layer N) isThe bottom layer (layer 0), is the hardware; the highest (layer N) is
the user interface.

2.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Layered Approach ExampleLayered Approach Example

UNIX – the original UNIX operating system had limited structuring. g p g y g
The UNIX OS consists of separable layers

2.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Microkernel System Structure Microkernel System Structure

Moves as much as possible from kernel space into “user” space
It l i l t h d d d t f ti l ti f ilitiIt only implements hardware dependent functions or real-time facilities.

Communication takes place between user modules using message passing
Benefits:

Easier to extend or modify a microkernel
Easier to port the operating system to new architectures
More reliable (less code is running in kernel mode)More reliable (less code is running in kernel mode)
More secure

Detriments:
Communication overhead

Performance overhead of user space to kernel space
communication

Example
Mach

2.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Microkernel System Structure Microkernel System Structure

2.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Monolithic System Structure Monolithic System Structure

Kernel controls all system functionalities
Compared to microkernel structure, it is fast and efficient to
manage resources.
Detriments

Size overhead
All functionalities are resided in memory

Recompile and rebooting is necessary when modified
Example

U i (BSD F il) S l iUnix (BSD Family), Solaris

2.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Monolithic System Structure Monolithic System Structure

2.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Monolithic with Module Monolithic with Module

Monolithic architecture with Module
Kernel includes basic component
Non-frequently used parts are implemented by Module and it is
loaded dynamically y y
Module is also useful to implement new device drivers or
system calls
E l LiExample: Linux

2.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Solaris Loadable Module Solaris Loadable Module

2.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

Virtual Machines

A virtual machine takes the layered approach.
It treats hardware and the operating system kernel as if they
were all hardware
A virtual machine provides an identical interface to theA virtual machine provides an identical interface to the
underlying bare hardware
The operating system host creates the illusion that a process
h it d i t lhas its own processor and virtual memory
Each guest is provided with a (virtual) copy of underlying
computer

Example
JAVA virtual machine
VMWare, VirtualBox, etc

2.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

VMware Architecture

2.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

The Java Virtual Machine

2.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts

End of Chapter 2End of Chapter 2

