3.2. Governing Equation and Boundary Conditions

3.2.1. governing equation
If flow is assumed to be incompressible and irrotational and the

fluid is to be inviscid, the flow motion is governed by the Laplace

equation. That is,

vio=0, —h<z<{}
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3.2.2. boundary conditions

a. kinematic free surface boundary condition (KFSBC)
KFSBC physically means that a water particle on the free
surface can not jump, so it should remain on the free surface.

That 1is, the water particle cannot penetrate into the free

surface. If the free surface is defined asz=71(x, £ or

F(lx,z,H)=7(x, D)—z=0. we then have
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Figure 3.1 (a) Generzl structure of two-dimensional boundary value problems.
(Note: The number of boundary conditions required depends on the order of the

differential equation.) (b) Two-dimensional water waves specified as a boundary
value problem. i
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It should be noted again that? is not a function of z.

If the boundary is described by F(x, y,z,t) =0, where we

have not only spatial dependency but also time dependency

because the location of the boundary is changing in space and
time, the rate of change of F for an observer moving with the

boundary is zero. Using the chain rule of differentiation , we

have
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in which  (dx/dt, dy/dt, dz/dt) = u is the velocity of the

boundary. Then, the above equation can be rewritten as

DF _ oF

a at-l—u-VF=O, on F=0

b. dynamic free surface boundary condition (DFSBC)
DFSBC is simply the Bernoulli equation on the free surface.

Therefore, DFSBC is expressed as
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in which p, is the atmospheric pressure on the free surface and

can be ignored. Then, we have
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c. solid boundary condition (SBC)
SBC is a boundary condition applied on the solid surface. In
general, SBC can be derived in a similar fashion to KFSBC.

Thus, we have SBC over a spatially varying depth as

A
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If the bottom topography is constant, that is h = constant, SBC

+w=0, z=—h(x)

can be simplified to be
w=0, z=—h
SBC also means that the water particle cannot penetrate into the

solid boundary and SBC is also called BBC (bottom boundary

condition) if it is applied to the bottom boundary.



Figure 3.3 Illustration of bottom boundary condition for the two-dimensional*
case. : T
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Figure 3.7 Boundary value problem specification for periodic water waves.

3.2.3. linearization of boundary conditions

a. nonlinearity in two aspects

- The boundary conditions contain nonlinear terms such as #d,%

and |v @ |2.

- The free surface boundary conditions are applied on an unknown
location in space. The position of the free surface is actually

a part of solution.

b. The main objective of linearization is, of course, to simplify the

problem.

c. The basic assumption of the small amplitude wave theory is that

the wave motion is small and then water particle velocity and

the free surface displacement are also small.

Moreover, since the free surface does not deviate much from its

rest position, we can apply the free surface boundary

conditions (KFSBC and DFSBC) on the still water level (z=0)



instead of on the free surface (z=7).

e. After neglecting the nonlinear terms the boundary conditions can be

summarized as:

- KFSBC
B ymg, 20
- DFSBC
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- SBC
w=0, z=—h

f. Since the nonlinear terms are all neglected, the small amplitude

wave theory becomes linear. [t must be noted that the domain

of governing equation also changes from —A2<z<{ to

—h<z<0.

g. The nonlinear terms can also ignored by a more formal way. To
show this we first introduce three important wvariables: ®, L
and ¢. Then, the typical time and the length scales may be
o~! and L, respectively. Of course, @ is another length scale

representing the amplitude of a wave. We also introduce a

symbol for the order of magnitude, O. Then, T~ O(a) means

that ¢ has the order of magnitude of «.

h. Since we already have both typical time and length scales, we can
normalize the governing equation and boundary conditions using

the following nondimensional variables:
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in which % is the wavenumber defined as k=2n/L.

Normalized (or dimensionless) governing equation and boundary
conditions are:

- governing equation

v2iI0 =0, —h' <z <K(ka)’

- KFSBC
ggt + (ka)u'g_gx" —w' =0, 2’ =((ka?’
- DFSBC
%q;', + %(ka)(u'hr w'?) + _k‘zg =0, =gV
w
- SBC

In the small amplitude wave theory, the order of magnitude of

wave steepness, Q(ka) (actually, wave steepness is defined as
H/L) is assumed to be very small. In other words, the wave
amplitude (@) is much smaller than the wavelength (L) . The
order of magnitude of O (kg/w?) is yet determined so it should

be included. After neglecting terms of Q(ka) the governing

equation and boundary conditions are finally summarized as:

- governing equation
vid=(0, —h<z<0
- KFSBC

- DFSBC
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- SBC

w=0, 2=—h
iIn which all dimensions are recovered. In some texts, a
terminology of CFSBC (Combined Free Surface Boundary

conditions) is also used. CFSBC is a combined form of KFSBC
and DFSBC. That is, by deleting? or ®, KFSBC and DFSBC can
be combined as:
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