

Discrete Mathematics:

representing relations

some special ways to represent binary relations:

- with a zero-one matrix

- with a directed graph.

zero-one matrices

 \blacksquare a binary relation R:A×B can be represented by a matrix $M_R = [m_{ij}]$

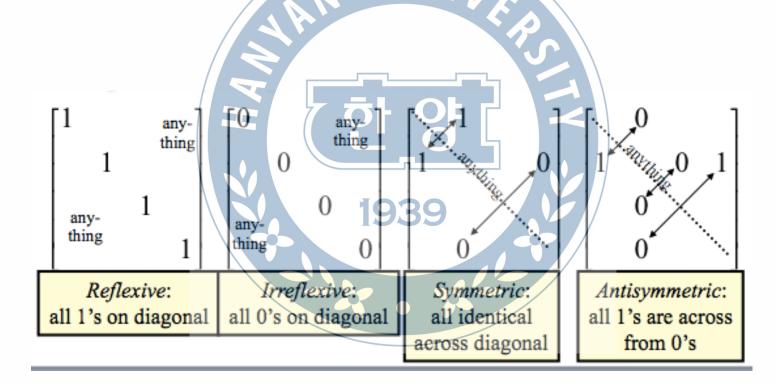
$$m_{ij} = I$$
 if $(a_i, b_j) \in R$
 $m_{ij} = 0$ if $(a_i, b_j) \notin R$

1939

Susan Mary Sally Joe 1 1 0 1 Fred 0 1 0 1 Mark 0 0 1 1

zero-one matrices

properties of the relation, reflexive, irreflexive, symmetric, and antisymmetric, are very easy to recognize by inspection of the zero-one matrix.



zero-one matrices

the relation R on a set is represented by the zero-one matrix

reflexive? symmetric? antisymmetric?

- combining relations by set operations
- set operations: union, intersection, and difference

A = { I, 2, 3} and B
$$\neq$$
 {u, v}
RI = {(I, u), (2, u), (2, v), (3, u)}
R2 = {(I, v), (3, u), (3, v)}

RI
$$\cup$$
 R2 = {(I, u), (2, u), (2, v), (3, u), (I, v), (3, v)}
RI \cap R2 = {(3, u)}
RI - R2 = {(I, u), (2, u), (2, v)}
R2 - RI = {(I, v), (3, v)}

union of two relations RI and R2 can be represented in terms of matrix operations

$$m_{ij} = a_{ij} \vee b_{ij}$$
 for all i and j $\bigcup N$

$$M_{RI} = \begin{bmatrix} I & 0 \\ I & I \\ I & 0 \end{bmatrix}$$

$$M_{R2} = \begin{bmatrix} 0 & I & M_{R1} \cup R2 = M_{R1} \lor M_{R2} = I & I \\ 0 & 0 & I & I & I \\ I & I & I & I \end{bmatrix}$$

■ intersection of two relations R1 and R2 can be represented in terms of matrix operations

$$m_{ij} = a_{ij} \wedge b_{ij}$$
 for all i and j $\bigcup N$

$$A = \{ 1, 2, 3 \} \text{ and } B = \{ u, v \}$$

$$RI = \{(1, u), (2, u), (2, v), (3, u)\}$$

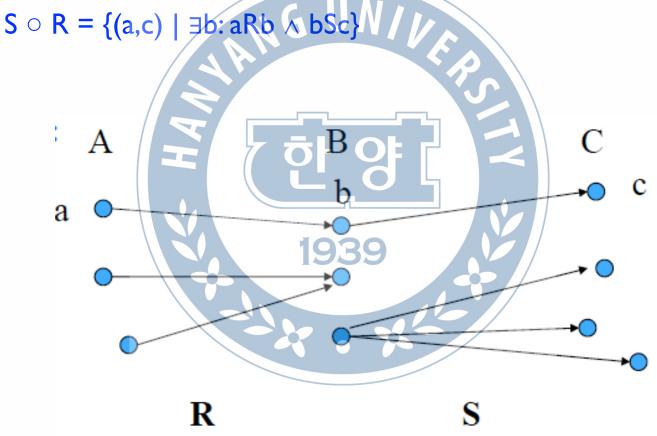
$$R2 = \{(1, v), (3, u), (3, v)\}$$

$$M_{R1} = \begin{vmatrix} I & 0 \\ I & I \\ I & 0 \end{vmatrix}$$

$$M_{R2} = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix}$$

$$M_{R1 \cap R2} = M_{R1} \wedge M_{R2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$$

■ let R:A × B, and S: B × C. Then the *composite* $S \circ R$ of R and S is



boolean product of two relations $RI(m \times n)$ and $R2(n \times p)$ can be represented in terms of matrix operations

$$m_{ij} = 1$$
 if $a_{ij} = 1$ and $b_{jk} = 1$ for $k = 1, 2, ..., n$
0 otherwise

$$A = \{1, 2\}, B = \{1, 2, 3\} C = \{a, b\}$$

R (a relation from A to B) =
$$\{(1, 2), (1, 3), (2, 1)\}$$

S (a relation from B to C) =
$$\{(1, a), (3, b), (3, a)\}$$

$$S \circ R = \{(1, a), (1, b), (2, a)\}$$

$$M_{R} = 0 I I$$

$$I 0 0$$

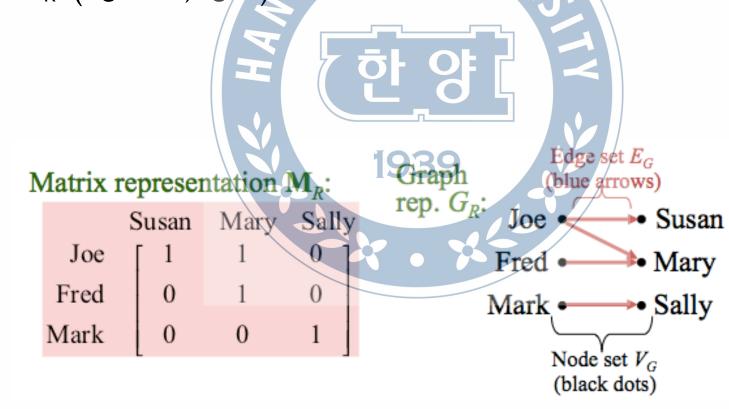
$$M_S = I 0$$

$$M_{S \circ R}$$

$$M_R \odot M_S = I I$$

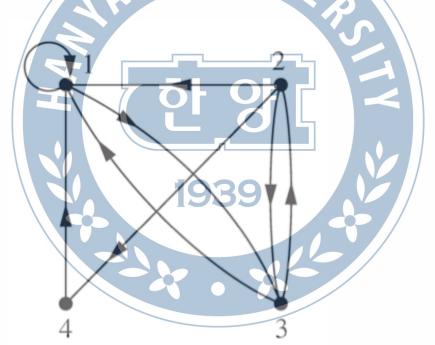
directed graphs

- a directed graph or digraph $G=(V_G,E_G)$ is a set V_G of vertices (nodes) with a set $E_G\subseteq V_G\times V_G$ of edges (arcs, links).
- visually represented using dots for nodes, and arrows for edges
- notice that a relation R:A×B can be represented as a graph $G_R=(V_G=A\cup B, E_G=R)$.



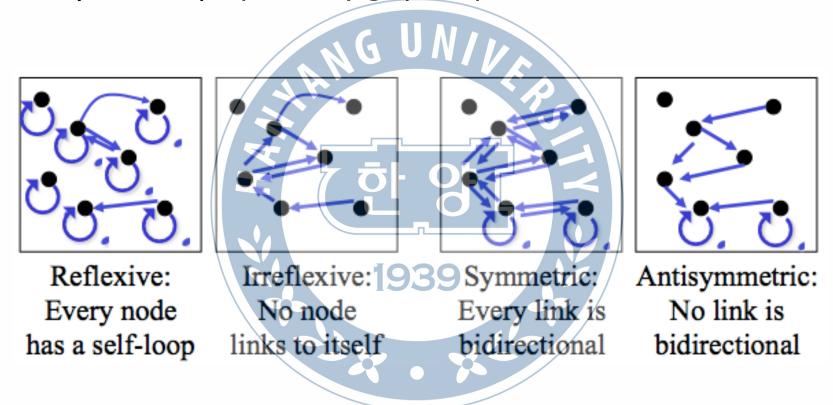
directed graphs

 $R = \{(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)\}$ on the set $\{1, 2, 3, 4\}$



digraph reflexive, symmetric

it is easy to recognize the reflexive, irreflexive, symmetric and antisymmetric properties by graph inspection.



closures of relations

- for any property X, the "X closure" of a set A is defined as the "smallest" superset of A that has the given property.
- reflexive closure
- symmetric closure
- transitive closure

reflexive closure

The reflexive closure of a relation R on A is obtained by adding (a,a) to R for each $a \in A$; i.e., it is $R \cup A$

R =
$$\{(1, 1), (1, 2), (2, 1), (3, 2)\}$$
 on the set A = $\{1, 2, 3\}$ reflexive closure of R = $\{(1, 1), (1, 2), (2, 1), (3, 2), (2, 2), (3, 3)\}$

1939

 $R = \{(a, b) \mid a < b\}$ on the set of integers is not reflexive reflexive closure of $R = \{(a, b) \mid a \le b\}$

symmetric closure

The symmetric closure of R is obtained by adding (b,a) to R for each (a,b) in R; i.e., it is $R \cup R^{-1}$

$$R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$$
 on the set $A = \{1, 2, 3\}$ symmetric closure of $R = \{(1, 1), (1, 2), (2, 1), (3, 2), (2, 3)\}$

1939

R = $\{(a, b) \mid a < b\}$ on the set of integers is not symmetric symmetric closure of R is R \cup R⁻¹= $\{(a, b) \mid a > b\} \cup \{(b, a) \mid a > b\}$ = $\{(a, b) \mid a \neq b\}$

transitive closures

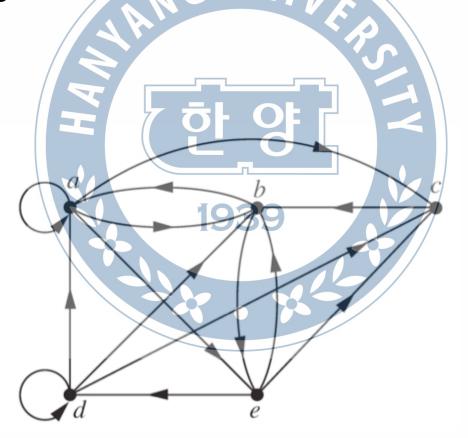
- the transitive closure or connectivity relation of R is obtained by repeatedly adding (a,c) to R for each (a,b),(b,c) in R.
- Finding a transitive closure is to find all pairs of elements that are connected with a directed path

R = $\{(1, 2), (2, 2), (2, 3)\}$ on the set A = $\{1, 2, 3\}$ is not transitive. transitive closure of R = $\{(1, 2), (2, 2), (2, 3), (1, 3)\}$

paths in digraphs

a path of length n from node a to b in the directed graph G is a sequence $(a, x_1), (x_1, x_2), ..., (x_{n-1}, b)$ of n ordered pairs in E_G

■ a path of length $n \ge 1$ from a to itself is called a circuit or a cycle.



paths in digraphs

note that there exists a path of length n from a to b in R if and only if $(a,b)\in R^n$.

length=1: there is a path from a to b of length 1 if and only if $(a,b) \in R$ length=n: assume that the theorem is true length=n+1: $c \in A$ such that there is a path of length one from a to c, $(a,c) \in R$ and a path of length n from c to b, $(c,b) \in R^n$. By the inductive hypothesis, there is a path of length n+1 from a to b iff there is an element c with $(a,c) \in R$ and $(c,b) \in R^n$. Therefore, there is a path of length n+1 form a to b iff $(a,b) \in R^{n+1}$

connectivity relation

Let R be a relation on a set A. The connectivity relation R* consists of all pairs (a, b) such that there is a path of any length between a and b in R

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

$$R = \{(1, 2), (2, 3), (3, 4), (1, 4)\}$$
 on the set $A = \{1, 2, 3, 4\}$

connectivity relation

Let R be a relation on a set A. The connectivity relation R* consists of all pairs (a, b) such that there is a path of any length between a and b in R

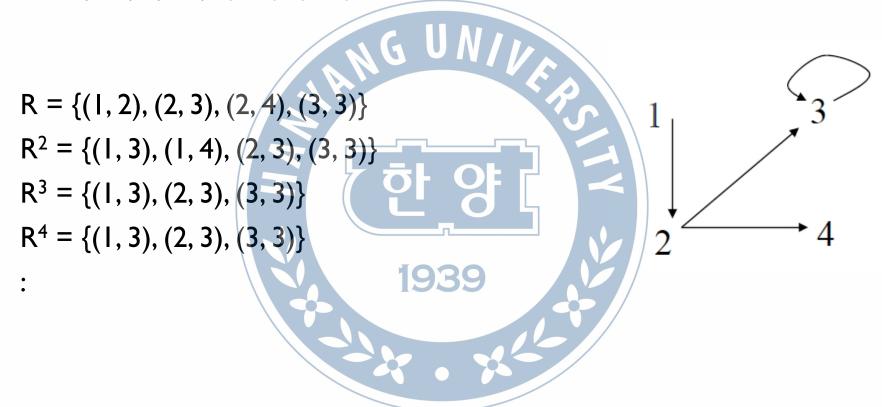
$$R^* = \bigcup_{k=1}^{\infty} R^k$$

$$R = \{(1, 2), (2, 3), (3, 4), (1, 4)\}$$
 on the set $A = \{1, 2, 3, 4\}$

$$R^* = \{(1, 2), (2, 3), (3, 4), (1, 4),$$

powers of R

 $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$ on the set $A = \{1, 2, 3, 4\}$



transitive closures

 M_R is the zero-one matrix of the relation R on a set with n elements. the zero-one matrix of the transitive closure R* is

$$M_{R*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} \vee ... \vee M_R^{[n]}$$

Find the zero-one matrix of the transitive closure of the relation R where

$$M_R = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array} \right]$$

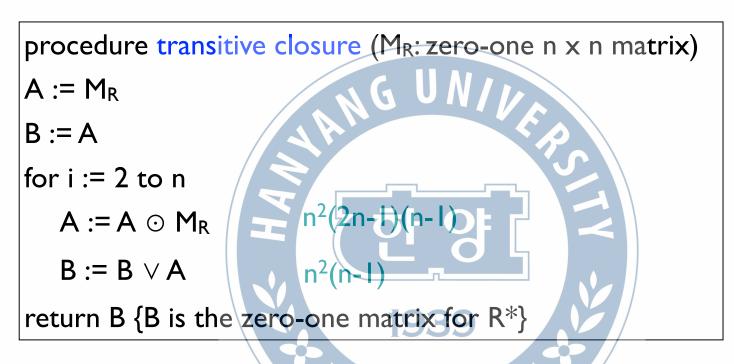
$$M_R^{[2]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad M_R^{[3]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

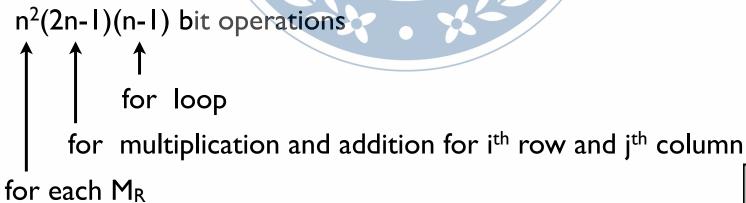
$$M_R^{[3]} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix}$$

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

transitive closures

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} \vee ... \vee M_R^{[n]}$$





CC BY NC ND