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representing relations

some special ways to represent binary relations:
– with a zero-one matrix
– with a directed graph.



zero-one matrices

a binary relation R: A×B can be represented by a matrix MR = [mij] 

mij = 1 if (ai, bj) ∈ R

mij = 0 if (ai, bj) ∉ R
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A = {Joe, Fred, Mark},  B = {Susan, Mary, Sally}

suppose Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally



properties of the relation, reflexive, irreflexive, symmetric, and 
antisymmetric, are very easy to recognize by inspection of the zero-one 
matrix.

zero-one matrices



MR = 1   1   0
1   1   1
0   1   1

reflexive?
symmetric?
antisymmetric?

zero-one matrices

the relation R on a set is represented by the zero-one matrix



combining relations

combining relations by set operations

set operations: union, intersection, and difference

A = { 1, 2, 3} and B = {u, v}

R1 = {(1, u), (2, u), (2, v), (3, u)}

R2 = {(1, v), (3, u), (3, v)}

R1 ∪ R2 = {(1, u), (2, u), (2, v), (3, u), (1, v), (3, v)}

R1 ∩ R2 = {(3, u)}

R1 - R2 = {(1, u), (2, u), (2, v)}

R2 - R1 = {(1, v), (3, v)}



combining relations

 union of two relations R1 and R2 can be represented in terms of matrix 
operations

       mij = aij ⋁ bij       for all i and j

A = { 1, 2, 3} and B = {u, v}

R1 = {(1, u), (2, u), (2, v), (3, u)}

R2 = {(1, v), (3, u), (3, v)}

MR1 =   1    0

            1    1

            1    0

MR2 =   0    1

            0    0

            1    1

MR1∪R2= MR1 ⋁ MR2 =   1    1

                                  1    1

                                  1    1



combining relations

 intersection of two relations R1 and R2 can be represented in terms of 
matrix operations

       mij = aij ⋀ bij       for all i and j

A = { 1, 2, 3} and B = {u, v}

R1 = {(1, u), (2, u), (2, v), (3, u)}

R2 = {(1, v), (3, u), (3, v)}

MR1 =   1    0

            1    1

            1    0

MR2 =   0    1

            0    0

            1    1

MR1∩R2 = MR1 ⋀ M R2 =   0    0

                                  0    0

                                  1    0



combining relations

 let R: A × B, and S: B × C.  Then the composite S ◦ R of R and S is 
defined as:
            S ◦ R = {(a,c) | ∃b: aRb ∧ bSc}



combining relations

boolean product of two relations R1(m x n) and R2(n x p) can be 
represented in terms of matrix operations

       mij = 1       if  aij = 1 and bjk = 1 for k = 1, 2, . . ., n

               0       otherwise

A = {1, 2}, B = {1, 2, 3} C = {a, b}

R (a relation from A to B) = {(1, 2), (1, 3), (2, 1)} 

S (a relation from B to C) = {(1, a), (3, b), (3, a)}

S ◦ R = {(1, a), (1, b), (2, a)}

MR =  0 1 1

         1 0 0  
MS   =  1  0

           0  0

           1  1  

MR ⨀ MS =   1    1

                   1    0

                  

MS∘R



directed graphs

a directed graph or digraph G=(VG,EG) is a set VG of vertices (nodes) 
with a set EG⊆VG×VG of edges (arcs, links).

visually represented using dots for nodes, and arrows for edges

notice that a relation R:A×B can be represented as a graph 
GR=(VG=A∪B, EG=R).



directed graphs

R = {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)}

on the set {1, 2, 3, 4}



digraph reflexive, symmetric

it is easy to recognize the reflexive, irreflexive, symmetric and 
antisymmetric properties by graph inspection.



closures of relations

for any property X, the “X closure” of a set A is defined as the 
“smallest” superset of A that has the given property.

reflexive closure 

symmetric closure 

transitive closure



reflexive closure

the reflexive closure of a relation R on A is obtained by adding (a,a) to 
R for each a∈A; i.e., it is R ∪ IA

R = {(1, 1), (1, 2), (2, 1), (3, 2)} on the set A = {1, 2, 3} 

reflexive closure of R = {(1, 1), (1, 2), (2, 1), (3, 2), (2, 2), (3, 3)}

R = {(a, b) | a < b} on the set of integers is not reflexive

reflexive closure of R = {(a, b) | a ≤ b}



symmetric closure

 the symmetric closure of R is obtained by adding (b,a) to R for each 
(a,b) in R; i.e., it is R ∪ R−1

R = {(1, 1), (1, 2), (2, 1), (3, 2)} on the set A = {1, 2, 3} 

symmetric closure of R = {(1, 1), (1, 2), (2, 1), (3, 2), (2, 3)}

R = {(a, b) | a < b} on the set of integers is not symmetric

symmetric closure of R  is R ∪ R-1= {(a, b) | a > b} ∪ {(b, a) | a > b} 

= {(a, b) | a≠ b}



transitive closures

 the transitive closure or connectivity relation of R is obtained by 
repeatedly adding (a,c) to R for each (a,b),(b,c) in R.

 Finding a transitive closure is to find all pairs of elements that are 
connected with a directed path

R = {(1, 2), (2, 2), (2, 3)} on the set A = {1, 2, 3} is not transitive.

transitive closure of R = {(1, 2), (2, 2), (2, 3), (1, 3)}
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paths in digraphs 

a path of length n from node a to b in the directed graph G is a 
sequence (a, x1), (x1, x2), …, (xn−1, b) of n ordered pairs in EG 

a path of length n≥1 from a to itself is called a circuit or a cycle.



paths in digraphs

note that there exists a path of length n from a to b in R if and only if 
(a,b)∈Rn.

length=1:  there is a path from a to b of length 1 if and only if (a, b) ∈ R

length=n:   assume that the theorem is true

length=n+1:  c ∈ A such that there is a path of length one from a to c, 

(a, c) ∈ R and a path of length n from c to b, (c, b) ∈ Rn. By the 

inductive hypothesis, there is a path of length n+1 from a to b iff there 

is an element c with (a, c) ∈ R and (c, b) ∈ Rn.  Therefore, there is a 

path of length n+1 form a to b iff (a, b)  ∈ Rn+1



connectivity relation

Let R be a relation on a set A. The connectivity relation R* consists of all 
pairs (a, b) such that there is a path of any length between a and b in R

R = {(1, 2), (2, 3), (3, 4), (1, 4)} on the set A={1, 2, 3, 4}

1 2

34

R2 = {(1, 3), (2, 4)}

R3 = {(1, 4)}

R4 = ?

:

R* =  ?



connectivity relation

Let R be a relation on a set A. The connectivity relation R* consists of all 
pairs (a, b) such that there is a path of any length between a and b in R

R = {(1, 2), (2, 3), (3, 4), (1, 4)} on the set A={1, 2, 3, 4}

1 2

34

R2 = {(1, 3), (2, 4)}

R3 = {(1, 4)}

R4 = {}

:

R* =  {(1, 2), (2, 3), (3, 4), (1, 4), (1, 3), (2, 4)}



powers of R

R = {(1, 2), (2, 3), (2, 4), (3, 3)} on the set A={1, 2, 3, 4}

R = {(1, 2), (2, 3), (2, 4), (3, 3)}

R2 = {(1, 3), (1, 4), (2, 3), (3, 3)}

R3 = {(1, 3), (2, 3), (3, 3)}

R4 = {(1, 3), (2, 3), (3, 3)}

:



transitive closures

  MR is the zero-one matrix of the relation R on a set with n elements. 
the zero-one matrix of the transitive closure R* is

  MR* = MR ⋁ MR[2] ⋁ MR [3] ⋁ . . . ⋁ MR [n] 

Find the zero-one matrix of the transitive closure of the relation R where

MR =
1 0 1
0 1 0
1 1 0
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[3] =

1 1 1
0 1 0
1 1 1
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  MR* = MR ⋁ MR[2] ⋁ MR [3] =
1 1 1
0 1 0
1 1 1
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transitive closures

procedure transitive closure (MR: zero-one n x n matrix)

A := MR

B := A

for i := 2 to n

A := A ⊙ MR

B := B ⋁ A

return B {B is the zero-one matrix for R*}

n2(2n-1)(n-1) bit operations

for  multiplication and addition for ith row and jth column

for  loop

for each MR

n2(2n-1)(n-1)

n2(n-1)

MR* = MR ⋁ MR[2] ⋁ MR [3] ⋁ . . . ⋁ MR [n] 


