Chapter 6. *pn*-junction diode: I-V characteristics

• **Topics:** steady state response of the *pn* junction diode under applied d.c. voltage.

pn Junction under bias (qualitative discussion)
Ideal diode equation
Deviations from the ideal diode
Charge-control approach

Carrier flow in equilibrium

Electron diffusion current is precisely balanced by electron drift current. -1

 $I_{n|drift} = I_{n|diffution}$

hole diffusion current is also balanced by hole drift current.

$$I_{p|drift} = I_{p|diffution}$$

Thus, no net current across the junction.

Prof. Yo-Sep Min

Carrier flow under forward bias

$$I_{n|drift} < I_{n|diffution} \\ \begin{cases} from p - to n - side \\ I_{p|drift} < I_{p|diffution} \end{cases}$$

(b) Forward bias ($V_A > 0$)

As the potential hill linearly decreases with the forward bias, the number of majority carriers which have sufficient energy to surmount the potential barrier exponentially goes up with V_A .

It is expected that forward current (i.e., majority carrier diffusion current) exponentially increases with V_A .

Prof. Yo-Sep Min

Carrier flow under reverse bias

(c) Reverse bias ($V_A < 0$)

The majority carrier diffusion across the junction is negligible.

The minority carrier drift is still allowed to flow the reverse current (i.e., minority carrier drift current) across the junction (from n- to p-side).

The reverse current is expected to be extremely small in magnitude, due to the low concentration of the minority carriers.

As V_A negatively increases, the reverse current is also expected to saturate, once the majority carrier diffusion currents are reduce to a negligible level at a small bias.

Ch 6-1 The ideal diode equation

Net current = $I_{diff} - I_{drift}$

At equilibrium ($V_A = 0$), net current = 0

set
$$|I_{diff}|_{V_A=0} = |I_{drift}|_{V_A=0} = I_0$$

 $|I_{drift}|$ saturates and does not change with V_A (Why?)

Because the drift current is limited NOT by HOW FAST carriers are swept across the depletion layer, but rather HOW OFTEN. → think a waterfall !

 $|I_{diff}|$ varies exponentially with V_A (Why?)

Because the number of carriers which have sufficient energy to surmount the potential barrier exponentially goes up with V_A .

Ch 6-1 The ideal diode equation

 $|I_{diff}| = I_0 \exp(V_A/V_{ref})$ where I_0 and V_{ref} are constants.

At any applied voltage, V_A , $I = I_0 e^{V_A/V_{ref}} - I_{driff}$

since $I_{drift} = I_0$ at any voltage.

$$= I_0 \mathbf{e}^{V_A/V_{ref}} - I_0$$
$$= I_0 \left(\mathbf{e}^{V_A/V_{ref}} - 1 \right)$$

$$I = I_0 \left(\mathbf{e}^{V_A/V_{ref}} - 1 \right)$$

Predicted equation for ideal diodes

pn junction under various bias conditions

Prof. Yo-Sep Min

Electronic Materials: Semiconductor Physics & Devices

Chapt. 5 - Lec 11-7

Ideal diode equation: quantitative solution

- Assumptions which must hold
 - The diode is being operated under steady state conditions
 - A non-degenerately doped step junction models the doping profile
 - The diode is one-dimensional
 - Low-level injection prevails in the quasi-neutral regions
 - There are no processes other than drift, diffusion, and thermal recombination-generation taking place inside the diode, specifically, $G_L=0$

Ideal diode equation: quantitative solution

We want to obtain a current equation of diode against V_A .

- Therefore the total current can be obtained from the total current density (J). I = AJ
- Note that the total current density (J) is constant throughout the diode under the steady state, but the J_n and J_p vary with position.

$$J = J_n(x) + J_p(x)$$

The $J_n(x)$ and $J_p(x)$ should be expressed as a function of x by using the following equations,

$$J_{n} = q\mu_{n}n\mathcal{E} + qD_{n}\frac{dn}{dx} \qquad \qquad J_{p} = q\mu_{p}p\mathcal{E} + qD_{p}\frac{dp}{dx}$$

The *n* and *p* can be evaluated by using the continuity equation.

Prof. Yo-Sep Min

Ideal diode equation: quantitative solution

Quasi-neutral region consideration

Let's consider the $J_n(x)$ and $J_p(x)$ in the quasi-neutral regions, because the continuity equation can be simplified to the minority carrier diffusion equation in this region (note that $\mathcal{E} \approx 0$ and the low level injection assumption).

Minority carrier diffusionequaiton

$$\frac{\partial \Delta n_p}{\partial t} = D_n \frac{\partial^2 \Delta n_p}{\partial x^2} - \frac{\Delta n_p}{\tau_n} + G_L$$
$$\frac{\partial \Delta p_n}{\partial t} = D_p \frac{\partial^2 \Delta p_n}{\partial x^2} - \frac{\Delta p_n}{\tau} + G_L$$

for electrons in *p*-type

Prof. Yo-Sep Min

Ideal diode equation: quantitative solution Quasi-neutral region consideration

Under the assumption of the steady state with $G_{L} = 0$,

$$\begin{array}{l} \text{Already we know} \\ \text{the general solution} \begin{cases} 0 = D_n \frac{\partial^2 \Delta n_p}{\partial x^2} - \frac{\Delta n_p}{\tau_n} & x \leq -x_p \\ 0 = D_p \frac{\partial^2 \Delta p_n}{\partial x^2} - \frac{\Delta p_n}{\tau_p} & x \geq x_n \end{cases} \\ \Delta n_p(x) = A e^{-x/L_n} + B e^{x/L_n} & \Delta p_n(x) = A e^{-x/L_p} + B e^{x/L_p} \end{cases}$$

Since $\mathcal{E} \approx 0$ and $dn_0/dx = dp_0/dx = 0$ in the quasi-neutral region, (note that $n = n_0 + \Delta n$ and $p = p_0 + \Delta p$)

$$J_n = q\mu_n n \mathcal{E} + qD_n \frac{dn}{dx} \longrightarrow J_n = qD_n \frac{d\Delta n_p}{dx} \qquad x \leq -x_p$$

$$J_{\rho} = q\mu_{\rho}\rho \mathcal{E} + qD_{\rho}\frac{d\rho}{dx} \longrightarrow J_{\rho} = qD_{\rho}\frac{d\Delta\rho_{n}}{dx} \qquad x \ge x_{n}$$

Chapt. 5 - Lec 11-11

Ideal diode equation: quantitative solution Depletion region consideration

In the depletion region, $\mathcal{E} \neq 0$ so, the continuity equation must be used under our assumptions (steady state and only thermal R-G process).

Additionally, we can assume that thermal R-G process is negligible throughout the depletion region.

Thus,
$$0 = \frac{\partial J_n}{\partial x}$$
 and $0 = \frac{\partial J_p}{\partial x}$ at $-x_p \le x \le x_n$

Ideal diode equation: quantitative solution Depletion region consideration

$$0 = \frac{\partial J_n}{\partial x}$$
 and $0 = \frac{\partial J_p}{\partial x}$ at $-x_p \le x \le x_n$

This reveals the constancy of the carrier currents throughout the depletion region (including the edges).

$$J_n(-x_p \le x \le x_n) = J_n(-x_p) = J_n(x_n)$$
$$J_p(-x_p \le x \le x_n) = J_p(-x_p) = J_p(x_n)$$

Summing two equations,

$$J = J_n(-x_p) + J_p(x_n)$$

If the ohmic contacts are far enough from the edges of the depletion region, the boundary conditions at the ohmic contacts

will be

$$\Delta n_{p}(\mathbf{X} \to -\infty) = 0$$
$$\Delta p_{n}(\mathbf{X} \to +\infty) = 0$$

[Band diagram inside a forward-biased diode]

To establish the boundary conditions at the edges of the depletion region, consider the definition of the quasi-Fermi levels.

$$F_{P} \equiv E_{i} - kT \ln\left(\frac{p}{n_{i}}\right)$$

$$F_{N} \equiv E_{i} + kT \ln\left(\frac{n}{n_{i}}\right)$$

$$n = n_{i}e^{\left(\frac{F_{n} - E_{i}}{kT}\right)}$$

$$p = n_{i}e^{\left(\frac{E_{i} - F_{p}}{kT}\right)}$$
Thus,
$$np = n_{i}^{2}e^{\left(\frac{F_{n} - F_{p}}{kT}\right)}$$

$$np = n_i^2 e^{\left(\frac{F_n - F_p}{kT}\right)}$$

$$E_{Fn}-E_{Fp}=qV_A$$

 $[F_p \text{ and } F_n \text{ variation inside a forward-biased diode}]$

Assuming $F_n - F_p = qV_A$, $F_n = E_{F_n}$ and $F_p = E_{F_p}$ throughout the depletion region,

$$F_n - F_p \leq E_{Fn} - E_{Fp} = qV_A$$

Therefore,

$$np = n_i^2 e^{qV_A/kT} \qquad -X_p \le X \le X_n$$

This equation is referred to as the "law of the junction".

Prof. Yo-Sep Min

$$np = n_i^2 e^{qV_A/kT} - x_p \le x \le x_n$$

At the p-edge of the depletion region,

$$n(-x_p)p(-x_p) = n(-x_p)N_A = n_i^2 e^{qV_A/kT}$$
 or $n(-x_p) = \frac{n_i^2}{N_A} e^{qV_A/kT}$

Then,
$$\Delta n_{p}(-x_{p}) = n_{p}(-x_{p}) - n_{p_{0}}(-x_{p}) = \frac{n_{i}^{2}}{N_{A}}e^{qV_{A}/kT} - \frac{n_{i}^{2}}{N_{A}}$$

$$\Delta n_{p}(-\boldsymbol{x}_{p}) = \frac{n_{i}^{2}}{N_{A}} \left(\boldsymbol{e}^{q V_{A}/kT} - 1 \right)$$

Similarly at the n-edge,

$$\Delta p_n(\boldsymbol{x}_n) = \frac{n_i^2}{N_D} \left(e^{q V_A / kT} - 1 \right)$$

Electronic Materials: Semiconductor Physics & Devices

Chapt. 5 - Lec 11-17

2

Plan for the quantitative solution

1) Solve the minority carrier diffusion equations employing boundary conditions

Plan for the quantitative solution

2) Compute the minority carrier current densities in the quasineutral regions using $d_{\Delta P}$

$$J_{n} = qD_{n} \frac{d\Delta n_{p}}{dx} \qquad x \leq -x_{p}$$
$$J_{p} = qD_{p} \frac{d\Delta p_{n}}{dx} \qquad x \geq x_{n}$$

3) Evaluate the quasi-neutral region solutions for $J_n(x)$ and $J_p(x)$ at the edges of the depletion region and then sum the two edge current densities.

$$J = J_n(-X_p) + J_p(X_n)$$

4) Finally, multiply the result by the cross-sectional area of the diode.

$$I = AJ$$

Announcements

• Next lecture: p. 247 ~ 259