
Files and Directories

‘15H2

Inshik Song



stat(2) family of functions

• All these functions return extended attributes about the referenced file (in the 
case of symbolic links, lstat(2) returns attributes of the link, others return stats 
of the referenced file).
– stat : returns a structure of information about the named file
– fstat : obtains information about the file that is already open on the descriptor fd
– lstat : returns information about the symbolic link, not the file referenced by the symbolic 

link
– fstatat : provides a way to return the file statistics for a pathname relative to an open 

directory represented by the fd argument

Files and Directories 2



File attributes: struct stat

Files and Directories 3

*) The definition of the structure can differ among implementations



File types

• The st_mode field of the struct stat encodes the type 
of file:
– regular – most common, interpretation of data is up to application

– directory – contains names of other files and pointer to information 
on those files. Any process can read, only kernel can write.

– character special – used for certain types of devices

– block special – used for disk devices (typically). All devices are either 
character or block special.

– FIFO – used for interprocess communication (sometimes called 
named pipe)

– socket – used for network communication and non-network 
communication (same host).

– symbolic link – Points to another file.

• Find out more in <sys/stat.h>.

Files and Directories 4



File types

• Macros used to determine the file type:

• Macros used to determine the type of IPC object:

Files and Directories 5



Files and Directories 6



Files and Directories 7



Counts and percentages of different 
file types

Files and Directories 8



Set-User-ID and Set-Group-ID

• Every process has six or more IDs associated with it:

• Whenever a file is setuid, set the effective user ID to st_uid. Whenever a file 
is setgid, set the effective group ID to st_gid. 

• As an example, the UNIX System program that allows anyone to change his 
or her password, passwd(1), is a set-user-ID program. This is required so that 
the program can write the new password to the password file, typically either 
/etc/passwd or /etc/shadow, files that should be writable only by the 
superuser

Files and Directories 9



File Access Permissions

• st_mode also encodes the file access permissions 
(S_IRUSR, S_IWUSR, S_IXUSR, S_IRGRP, S_IWGRP, 
S_IXGRP, S_IROTH, S_IWOTH, S_IXOTH). Uses of the 
permissions are summarized as follows:
– To open a file, need execute permission on each directory 

component of the path

– To open a file with O_RDONLY or O_RDWR, need read permission

– To open a file with O_WRONLY or O_RDWR, need write permission

– To use O_TRUNC, must have write permission

– To create a new file, must have write+execute permission for the 
directory

– To delete a file, need write+execute on directory, file doesn’t matter

– To execute a file (via exec family), need execute permission

Files and Directories 10



File Access Permissions

• Which permission set to use is determined (in order 
listed):
1. If effective-uid == 0, grant access

2. If effective-uid == st_uid

2.1. if appropriate user permission bit is set, grant access

2.2. else, deny access

3. If effective-gid == st_gid

3.1. if appropriate group permission bit is set, grant access

3.2. else, deny access

4. If appropriate other permission bit is set, grant access, else 
deny access

Files and Directories 11



Ownership of New Files and 
Directories

• st_uid = effective-uid

• st_gid = ...either:

– effective-gid of process

– gid of directory in which it is being created

Files and Directories 12



access(2)

• Tests file accessibility on the basis of the real uid and 
gid. Allows setuid/setgid programs to see if the real 
user could access the file without it having to drop 
permissions to do so.

• The mode parameter can be a bitwise OR of:
– R_OK – test for read permission

– W_OK – test for write permission

– X_OK – test for execute permission

– F_OK – test for existence of file

Files and Directories 13



Files and Directories 14



Files and Directories 15



umask(2)

• umask(2) sets the file creation mode mask. Any bits 
that are on in the file creation mask are turned off in 
the file’s mode.

• Important because a user can set a default umask. If a 
program needs to be able to insure certain 
permissions on a file, it may need to turn off (or 
modify) the umask, which affects only the current 
process.

Files and Directories 16



Files and Directories 17



chmod(2), fchmod(2) and fchmodat(2)

• Changes the permission bits on the file. Must be either 
superuser or effective uid == st_uid. mode can be any of 
the bits from our discussion of st_mode as well as:
– S_ISUID – setuid

– S_ISGID – setgid

– S_ISVTX – sticky bit (aka “saved text”)

– S_IRWXU – user read, write and execute

– S_IRWXG – group read, write and execute

– S_IRWXO – other read, write and execute

Files and Directories 18



Files and Directories 19



Sticky bit

• In the early UNIX systems, the sticky bit is used to save the text images 
in the swap area when the process terminated.

• On contemporary systems, the use of the sticky bit has been extended. 
The Single UNIX Specification allows the sticky bit to be set for a 
directory. If the bit is set for a directory, a file in the directory can be 
removed or renamed only if the user has write permission for the 
directory and meets one of the following criteria:

– Owns the file

– Owns the directory

– Is the superuser

• The directories /tmp and /var/tmp are typical candidates for the sticky 
bit—they are directories in which any user can typically create files. The 
permissions for these two directories are often read, write, and execute 
for everyone (user, group, and other). But users should not be able to 
delete or rename files owned by others.

Files and Directories 20



chown(2), fchown(2), fchownat(2) and 
lchown(2)

• Changes st_uid and st_gid for a file. For BSD, must be superuser.

• Some SVR4’s let users chown files they own. POSIX.1 allows either depending on 
_POSIX_CHOWN_RESTRICTED (a kernel constant).

• owner or group can be -1 to indicate that it should remain the same.

• Non-superusers can change the st_gid field if both:

– effective-user ID == st_uid and

– owner == file’s user ID and group == effective-group ID (or one of the supplementary 
group IDs)

• chown and friends clear all setuid or setgid bits.

Files and Directories 21



File Size

• The st_size member of the stat structure contains the size of the 
file in bytes. This field is meaningful only for regular files, 
directories, and symbolic links.

– For a regular file, a file size of 0 is allowed.

– For a symbolic link, the file size is the number of bytes in the 
filename.

Files and Directories 22



Holes in a File

• The size of the file core is slightly more than 8 MB, yet the du command 
reports that the amount of disk space used by the file is 272 512-byte 
blocks (139,264 bytes).

• Obviously, this file has many holes.

Files and Directories 23



File Truncation

• Truncate an existing file to length bytes. 

– If the previous size of the file was greater than length, the data 
beyond length is no longer accessible. 

– Otherwise, if the previous size was less than length, the file size will 
increase and the data between the old end of file and the new end 
of file will read as 0 (i.e., a hole is probably created in the file).

• Use ftruncate when we need to empty a file after obtaining a lock 
on the file.

Files and Directories 24



File Systems

File System 25



File Systems

• A directory entry is really just a hard link mapping a “filename” to 
an inode

• You can have many such mappings to the same file

File System 26



Directories

File System 27

• Directories are special ”files” containing hardlinks

• Each directory contains at least two entries:
– . (this directory)

– .. (the parent directory)

• The link count (st_nlink) of a directory is at least 2


