CHAPTER 4

Proteins: Structure, Function, Folding

Learning goals:

- Structure and properties of the peptide bond
- Structural hierarchy in proteins
- Structure and function of fibrous proteins
- Structure analysis of globular proteins
- Protein folding and denaturation

Structure of Proteins

- Unlike most organic polymers, protein molecules adopt a specific three-dimensional conformation.
- This structure is able to fulfill a specific biological function
- This structure is called the native fold
- The native fold has a large number of favorable interactions within the protein
- There is a cost in conformational entropy of folding the protein into one specific native fold

Favorable Interactions in Proteins

• Hydrophobic effect

 Release of water molecules from the structured solvation layer around the molecule as protein folds increases the net entropy

• Hydrogen bonds

- Interaction of N-H and C=O of the peptide bond leads to local regular structures such as α -helices and β -sheets

• London dispersion

 Medium-range weak attraction between all atoms contributes significantly to the stability in the interior of the protein

• Electrostatic interactions

- Long-range strong interactions between permanently charged groups
- Salt-bridges, esp. buried in the hydrophobic environment strongly stabilize the protein

4 Levels of Protein Structure

Structure of the Peptide Bond

- Structure of the protein is partially dictated by the properties of the peptide bond
- The peptide bond is a resonance hybrid of two canonical structures
- The resonance causes the peptide bonds
 - to be less reactive compared to esters, for example
 - to be quite **rigid** and nearly **planar**
 - to exhibit a large dipole moment in the favored trans configuration

Resonance in the Peptide Bond

The carbonyl oxygen has a partial negative charge and the amide nitrogen a partial positive charge, setting up a small electric dipole. Virtually all peptide bonds in proteins occur in this trans configuration; an exception is noted in Figure 4–7b.

Figure 4-2a

The Rigid Peptide Plane and the Partially Free Rotations

- Rotation around the peptide bond is not permitted
- Rotation around bonds connected to the alpha carbon is permitted
- φ (phi): angle around the α-carbon—amide nitrogen bond
- ψ (psi): angle around the α-carbon—carbonyl carbon
 bond
- In a fully extended polypeptide, both ψ and ϕ are 180°

The polypeptide is made up of a series of planes linked at α carbons

Figure 4-2b

Distribution of ϕ and ψ **Dihedral Angles**

- Some φ and ψ combinations are very unfavorable because of steric crowding of backbone atoms with other atoms in the backbone or side chains
- Some \u03c6 and \u03c8 combinations are more favorable because of chance to form favorable H-bonding interactions along the backbone
- A Ramachandran plot shows the distribution of ϕ and ψ dihedral angles that are found in a protein
 - shows the common secondary structure elements
 - reveals regions with unusual backbone structure

Figure 4-9a

Ramachandran Plot

Figure 4-9b Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Secondary Structures

- Secondary structure refers to a local spatial arrangement of the polypeptide backbone
- Two regular arrangements are common:
- The *α* helix
 - stabilized by hydrogen bonds between nearby residues
- The *β* **sheet**
 - stabilized by hydrogen bonds between adjacent segments that may not be nearby
- Irregular arrangement of the polypeptide chain is called the random coil

TABLE 4-1

Idealized ϕ and ψ Angles for Common Secondary Structures in Proteins

Structure	ϕ	ψ	
α Helix	-57°	-47°	
β Conformation			
Antiparallel	-139°	+135°	
Parallel	-119°	+113°	
Collagen triple helix	—51°	+153°	
meta Turn type l			
i + 1*	-60°	-30°	
i + 2*	-90°	0 °	
eta Turn type ll			
i + 1	-60°	+120°	
i + 2	+80°	0 °	

Note: In real proteins, the dihedral angles often vary somewhat from these idealized values.

*The i+1 and i+2 angles are those for the second and third amino acid residues in the β turn, respectively.

 Table 4-1

 Lehninger Principles of Biochemistry, Sixth Edition

 © 2013 W. H. Freeman and Company

The α Helix

- Helical backbone is held together by hydrogen bonds between the backbone amides of an n and n+4 amino acids
- Right-handed helix with 3.6 residues (5.4 Å) per turn
- Peptide bonds are aligned roughly parallel with the helical axis
- Side chains point out and are roughly perpendicular with the helical axis

What is a right-handed helix?

The α Helix: Top View

- The inner diameter of the helix (no side chains) is about 4–5 Å
 - Too small for anything to fit "inside"
- The outer diameter of the helix (with side chains) is 10–12 Å
 - Happens to fit well into the major groove of dsDNA
- Residues 1 and 8 align nicely on top of each other
 - What kind of sequence gives an α helix with one hydrophobic face?

Sequence affects helix stability

- Not all polypeptide sequences adopt α -helical structures
- Small hydrophobic residues such as Ala and Leu are strong helix formers
- Pro acts as a helix breaker because the rotation around the N-C_a bond is impossible
- Gly acts as a helix breaker because the tiny R-group supports other conformations
- Attractive or repulsive interactions between side chains
 3–4 amino acids apart will affect formation

TABLE 4-2

Propensity of Amino Acid Residues to Take Up an α -Helical Conformation

Amino acid	$\Delta\Delta G^{\circ}$ (kJ/mol)*	Amino acid	∆∆G° (kJ/mol)*
Ala	0	Leu	0.79
Arg	0.3	Lys	0.63
Asn	3	Met	0.88
Asp	2.5	Phe	2.0
Cys	3	Pro	>4
Gln	1.3	Ser	2.2
Glu	1.4	Thr	2.4
Gly	4.6	Tyr	2.0
His	2.6	Trp	2.0
lle	1.4	Val	2.1

Sources: Data (except proline) from Bryson, J.W., Betz, S.F., Lu, H.S., Suich, D.J., Zhou, H.X., O'Neil, K.T., & DeGrado, W.F. (1995) Protein design: a hierarchic approach. *Science* 270, 935. Proline data from Myers, J.K., Pace, C.N., & Scholtz, J.M. (1997) Helix propensities are identical in proteins and peptides. *Biochemistry* 36, 10,926.

* $\Delta\Delta G^{\circ}$ is the difference in free-energy change, relative to that for alanine, required for the amino acid residue to take up the α -helical conformation. Larger numbers reflect greater difficulty taking up the α -helical structure. Data are a composite derived from multiple experiments and experimental systems.

Table 4-2

The Helix Dipole

- Recall that the peptide bond has a strong dipole moment
 - Carbonyl O negative
 - Amide H positive
- All peptide bonds in the α helix have a similar orientation
- The α helix has a large macroscopic dipole moment
- Negatively charged residues often occur near the positive end of the helix dipole

β Sheets

- The planarity of the peptide bond and tetrahedral geometry of the α-carbon create a pleated sheet-like structure
- Sheet-like arrangement of backbone is held together by hydrogen bonds between the backbone amides in different strands
- Side chains protrude from the sheet alternating in up and down direction

Parallel and Antiparallel β Sheets

- Parallel or antiparallel orientation of two chains within a sheet are possible
- In parallel β sheets the H-bonded strands run in the same direction
 - Resulting in bent H-bonds (weaker)
- In antiparallel β sheets the H-bonded strands run in opposite directions
 - Resulting in linear H-bonds (stronger)

βTurns

- β turns occur frequently whenever strands in β sheets change the direction
- The 180° turn is accomplished over four amino acids
- The turn is stabilized by a hydrogen bond from a carbonyl oxygen to amide proton three residues down the sequence
- Proline in position 2 or glycine in position 3 are common in β turns

4 3 Gly 2 1 Cα Type II β turn

Figure 4-7

Proline Isomers

- Most peptide bonds not involving proline are in the trans configuration (>99.95%)
- For peptide bonds involving proline, about 6% are in the cis configuration. Most of this 6% involve β -turns
- Proline isomerization is catalyzed by proline isomerases

Figure 4-8

Circular Dichroism (CD) Analysis

- CD measures the molar absorption difference $\Delta \varepsilon$ of leftand right-circularly polarized light: $\Delta \varepsilon = \varepsilon_{L} - \varepsilon_{R}$
- Chromophores in the chiral environment produce characteristic signals
- CD signals from peptide bonds depend on the chain conformation

Protein Tertiary Structure

- Tertiary structure refers to the overall spatial arrangement of atoms in a protein
- Stabilized by numerous weak interactions between amino acid side chains.
 - Largely hydrophobic and polar interactions
 - Can be stabilized by disulfide bonds
- Interacting amino acids are not necessarily next to each other in the primary sequence.
- Two major classes
 - Fibrous and globular (water or lipid soluble)

Water-Soluble Globular Proteins

Figure 4-16

Fibrous Proteins: From Structure to Function

TABLE 4-3	Secondary Structures and Properties of Some Fibrous Proteins		
Structure		Characteristics	Examples of occurrence
α Helix, cross-liı disulfide bon	nked by ds	Tough, insoluble protective structures of varying hardness and flexibility	lpha-Keratin of hair, feathers, nails
β Conformation	1	Soft, flexible filaments	Silk fibroin
Collagen triple	helix	High tensile strength, without stretch	Collagen of tendons, bone matrix

Structure of *α***-Keratin in Hair**

Figure 4-11b

Structure of Collagen

- Collagen is an important constituent of connective tissue: tendons, cartilage, bones, cornea of the eye
- Each collagen chain is a long Gly- and Pro-rich lefthanded helix
- Three collagen chains intertwine into a right-handed superhelical triple helix
- The triple helix has higher tensile strength than a steel wire of equal cross section
- Many triple-helices assemble into a collagen fibril

Collagen Fibrils

4-Hydroxyproline in Collagen

- Forces the proline ring into a favorable pucker
- Offer more hydrogen bonds between the three strands of collagen
- The post-translational processing is catalyzed by prolyl hydroxylase and requires α-ketoglutarate, molecular oxygen, and ascorbate (vitamin C)

Box 4-3 figure 1

Vitamin C in prolyl 4-hydroxylase restores Fe²⁺ state

Silk Fibroin

- Fibroin is the main protein in silk from moths and spiders
- Antiparallel β sheet structure
- Small side chains (Ala and Gly) allow the close packing of sheets
- Structure is stabilized by
 - hydrogen bonding within sheets
 - London dispersion interactions between sheets

Spider Silk

- Used for webs, egg sacks, and wrapping the prey
- Extremely strong material
 - stronger than steel
 - can stretch a lot before breaking
- A composite material
 - crystalline parts (fibroin-rich)
 - rubber-like stretchy parts

Motifs (folds)

- Specific arrangement of several secondary structure elements
 - All alpha-helix
 - All beta-sheet
 - Both
- Motifs can be found as reoccurring structures in numerous proteins
- Proteins are made of different motifs folded together

β-α-β Loop

(a) Typical connections in an all-β motif

Crossover connection (rarely observed)

(b) Right-handed connection between β strands Left-handed connection between β strands (very rare)

(c) Twisted β sheet

Quaternary Structure

 Quaternary structure is formed by the assembly of individual polypeptides into a larger functional cluster

Protein Structure Methods: X-Ray Crystallography

Steps needed

- Purify the protein
- Crystallize the protein
- Collect diffraction data
- Calculate electron density
- Fit residues into density

Pros

- No size limits
- Well-established

Cons

- Difficult for membrane proteins
- Cannot see hydrogens

Box 4-5 figure 1 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company