

Structures of Metals and Ceramics

Introduction to Crystal Structure

Issues to Address...

- How do atoms assemble into solid structures?
- How do the structures of ceramicmaterials differ from those of metals?
- How does the density of a material depend on its structure?
- When do material properties vary with the sample (i.e., part) orientation?

Reading and Thinking

- What is Lattice, Unit Cell?
- What is Metallic Structures (SC, BCC, FCC, HCP)?
- Ionic Crystals
- Miller-Bravais Indices
- Seven Crystal System
- X-ray diffraction

Metallic Crystals

- Tend to be densely packed.
- Have several reasons for dense packing:
	- - Typically, only one element is present. so all atomic radii are the same.
	- -Metallic bonding is not directional.
	- - Nearest neighbor distances tend to be small in order to lower bond energy.
- Have the simplest crystal structures.

We will look at three such structures...

Unit Cells

Lattice Three dimensional array of points coinciding with atom positions (lattice points).

Lattice point Positions in the structure which are identical.

Unit cell

Smallest and convenient repeat unit in the lattice.

Simple Cubic (SC) Structure

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube edges.

1 atoms/unit cell: 8 corners x 1/8

Atomic Packing Factor

• APF for a simple cubic structure = 0.52

Body Centered Cubic (BCC) Structure

• Atoms touch each other along cube diagonals.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

• Coordination # = 8

2 atoms/unit cell: 1 center + 8 corners x 1/8

Atomic Packing Factor : BCC

• APF for a body-centered cubic structure $= 0.68$

Face Centered Cubic (FCC) Structure

• Atoms touch each other along face diagonals.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag
\n• Coordination
$$
= 12
$$

4 atoms/unit cell: 6 face \times 1/2 + 8 corners \times 1/8

Atomic Packing Factor : FCC

• APF for a face-centered cubic structure = 0.74

maximum achievable APF

Close-packed directions: length = 4*R* = √2a

Unit cell contains: $6 \times 1/2 + 8 \times 1/8$

= 4 atoms/unit cell

FCC Stacking Sequence

- ABCABC... Stacking Sequence
- 2D Projection

A sites B sites

C sites

• FCC Unit Cell

Hexagonal Close-Packed (HCP) Structure

- ABAB... Stacking Sequence
- 3D Projection 2D Projection *c a* A sites B sites A sites

- Coordination $# = 12$
- APF = 0.74
- *c*/ *a* = 1.633

6 atoms/unit cell ex: Cd, Mg, Ti, Zn

Metallic Structure : HCP

$$
\frac{c}{a} = \frac{2 \times \sqrt{\frac{8}{3}} R}{2 R} = 1.633
$$

$$
APF_{HCP} = \frac{\frac{4}{3} \pi r^3 \times 2}{8\sqrt{2} R^3} = 74\%
$$

Number of nearest atoms = 12

Theoretical Density_1

Density =
$$
\rho
$$
 = $\frac{\text{Mass of Atoms in United II}}{\text{Total Volume of United II}}$

$$
\rho = \frac{nA}{V_c N_A}
$$

where
$$
n =
$$
 number of atoms/unit cell
 $A =$ atomic weight

- V_C = Volume of unit cell = a^3 for cubic
- *N_A* = Avogadro's number
	- $= 6.023 \times 10^{23}$ atoms/mol

Theoretical Density_2

Comparing X-ray density with bulk density

can check if there are vacant atom sites or

extra atoms (interstitials).

Characteristics of Selected Elements at 20 ℃

Adapted from *http://rdarke.weebly.com/uploads/1/7/9/7/1797891/45 characteristics.pdf*

Ceramic Bonding

- Bonding:
	- --Mostly ionic, some covalent.
	- --% ionic character increases with difference in electronegativity.
- Large vs small ionic bond character:

Ionic Bonding & Structure

• Charge Neutrality: --Net charge in the structure shouldbe zero.

--General form: A mX p

 \overline{m} , p determined by charge neutrality

- · Stable structures:
	- **--maximize the # of nearest oppositely charged neighbors.**

Coordination No. and Ionic Radii

• On the basis of ionic radii, what crystal structure would you predict for FeO?

Structure Of Compounds: NaCl

- Compounds: Often have similar close-packed structures.
- Structure of NaCl

• Close-packed directions --along cube edges.

• Consider CaF₂:
$$
\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.100}{0.133} \approx 0.8
$$

- Based on this ratio, coord $# = 8$ and structure $= CsCl$.
- Result: CsCI structure w/only half the cation sites occupied.

• Only half the cation sites are occupied since $\#Ca^{2+}$ ions = $1/2 \# F$ ions.

Diamond and Perovskite Structure

Polymorphism

• Two or more distinct crystal structures for the same material (allotropy/polymorphism)

titanium α , β -Ti carbon diamond, graphite BCC FCC BCC 1538ºC 1394ºC 912ºC **-**Fe γ -Fe **-**Fe liquid iron system

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

- 7 crystal systems
- 14 crystal lattices

a, b, and *^c* are the lattice constants

Crystal Systems_2

© John Wiley & Sons, Inc. All rights reserved.

Five Symmetrical Plane Lattices

(a) Parallelogram (b) Square (c) Rhombus

Seven Crystal Systems

Seven crystal systems : based on crystal symmetry

Point Coordinates

Point coordinates for unit cell center are

$$
a/2, b/2, c/2 \t\t 1/2 \t 1/2 \t 1/2
$$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants \rightarrow identical position in another unit cell

Crystallographic Directions

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions a, b, and c.
- 3. Adjust to smallest integer values.
- 4. Enclose in square brackets, no commas [uvw].

ex: 1, 0, ½ => 2, 0, 1 => [201]

 $-1, 1, 1 \implies [111]$ where overbar represents a negative index

HCP Crystallographic Directions

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions \boldsymbol{a}_1 , \boldsymbol{a}_2 , \boldsymbol{a}_3 , or \boldsymbol{c}
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas [*uvtw*]

 \bm{a}_2

ex: $\frac{1}{2}$, $\frac{1}{2}$, -1 , 0 \implies [1120]

dashed red lines indicate projections onto \boldsymbol{a}_1 and \boldsymbol{a}_2 axes $a₁$ *a* 3 -*a* 32*a* 2 $\overline{2}$ *a*1

For hexagonal system (uvtw), \quad t = $\mathord{\hspace{1pt}\text{--}}\,(\mathord{\mathsf{u}}\text{-}\mathord{\mathsf{v}})$

Conversion from the three-index system to four-index system $[\mathsf{u}^\prime \mathsf{v}^\prime \mathsf{w}^\prime] \;\; \rightarrow \;\; [\mathsf{u}\mathsf{v}\mathsf{t}\mathsf{w}]$

$$
u = \frac{n}{3}(2u' - v')
$$

$$
v = \frac{n}{3}(2v' - u')
$$

$$
t = -(u + v)
$$

$$
w = nw'
$$

Direction [uvw], Family of directions <uvw>

```
[101][011][011][011][110][101]
[110][101][011][110][110][101]
Example <110>
```
- <110> : Face diagonal
- <111> : Cube diagonal
- <100> : Cube edge

Crystallographic Planes_1

Crystallographic Planes_2

Crystallographic Planes_3

- example 1. Intercepts 1/2 1 3/4 a b 2. Reciprocals 1/½ 1/1 1/¾ 2 1 4/3 3. Reduction6 3 4
- 4. Miller Indices (634)

Family of Planes {hkl}

(010), (001) Ex: {100} = (100), (001), (100), (010),

Crystallographic Planes (HCP)

• In hexagonal unit cells the same idea is used

Crystallographic Directions and Planes

In cubic system, planes are perpendicular to direction.

It does not apply for other systems.

For cubic system,

$$
\cos \theta = \frac{A \times B}{|A| |B|}
$$

(111), (100) For example,

$$
\cos \theta = \frac{1 \times 1 + 1 \times 0 + 1 \times 0}{\sqrt{1^2 + 1^2 + 1^2} \cdot \sqrt{1^2 + 0^2 + 0^2}}
$$

$$
= \frac{1}{\sqrt{3}}
$$

$$
\therefore \theta = 54.74^{\circ}
$$

cf) directions included in a plane

Close Packed Structure - FCC

Stacking of (111) Planes

Close Packed Structure - HCP

Stacking of (002) planes

Linear Density

•Linear Density of Atoms \equiv LD = Number of atoms

Unit length of direction vector

 $\ddot{}$ *a* = 0.405 nmEx) Linear density of Al in [110] direction

 $a = 0.405$ nm

Crystallographic Planes

- \bullet We want to examine the atomic packing of crystallographic planes
- \bullet Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
	- a) Draw (100) and (111) crystallographic planes for Fe.
	- b) Calculate the planar density for each of these planes.

Planar Density of (100) Iron

Solution: $\,$ At T < 912°C iron has the BCC structure.

Planar Density of (111) Iron

X-Ray Diffraction

Electromagnetic Spectrum

- • Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- •Can't resolve spacings $< \lambda$
- •Spacing is the distance between parallel planes of atoms.

X-Rays to Confirm Crystal Structure

• Incoming X-rays diffract from crystal planes.

Crystalline and Noncrystalline Materials

X-ray diffraction

: advantages in X-rays for crystal structure analysis

wavelength 0.1~10 Å which is comparable to crystal lattice

Bragg's law : λ = 2d sin θ

Figure 3.38 © John Wiley & Sons, Inc. All rights reserved.

Uses monochromic X-ray Cu_{Ka} $(1.5418A)$ Kα

Cubic system
$$
d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}
$$

θ : variable , a : lattice constant

Simple Cubic

all {hkl}

{100} {110} {111} {200} {210} {211} {220} {221} ^h² + k² + l² = 1, 2, 3, 4, 5, 6, 8, 9

BCC

Out of phase !! [∴] (100) in BCC does not appear

X-Ray Diffraction Pattern

Diffraction pattern for polycrystalline α -iron (BCC)

Importance of X-Ray Diffraction

difference in CsCl and BCC : (100) peak exists but weak

FCC

X-Ray Diffraction

Further Thinking !

- 1. X-Ray System
- 2. How can we get single λ ?
- 3. Diffraction Order
- 4. SC vs BCC
- 5. Alloying Effect
- 6. Why Powder ?
- 7. Lattice Parameter Measurement
- 8. Peak Separation (Phase Transformation)

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: metals -many ceramics -some polymers
- long range order

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: complex structures -rapid cooling
- "Amorphous" = Noncrystalline
	- short range order

Si Oxygen

noncrystalline SiO 2

Energy and Packing

Noncrystalline Solids

• Quartz is crystalline SiO2:

- Basic Unit: Glass is amorphous
	- Amorphous structure occurs by adding impurities $(Na^+,Mg^{2+},Ca^{2+},Al^{3+})$
	- Impurities: interfere with formation of crystalline structure.

Polycrstals

• Most engineering materials are polycrystals.

Adapted from Fig. K, color inset pages of Callister 6e. (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- If crystals are randomly oriented, overall component properties are not directional.
- Crystal sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Crystalline and Noncrystalline Materials

(1) Polycrystal

(2) Anisotropy

- direction of properties
- function of symmetry
- amorphous material $\;\;\rightarrow\;\;$ isotropic

Single VS Polycrystals

- Single Crystals -Properties vary with direction: anisotropic.
	- -Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
	- -Properties may/may not vary with direction. -If grains are randomly oriented: isotropic. $(E_{poly}$ iron = 210 GPa) -If grains are textured, anisotropic.

Summary

- Atoms may assemble into crystalline or amorphous structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but properties are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.