

Structures of Metals and Ceramics

Introduction to Crystal Structure

Structures of Metals and Ceramics

Issues to Address...

- How do atoms assemble into solid structures?
- How do the structures of ceramic materials differ from those of metals?
- How does the density of a material depend on its structure?
- When do material properties vary with the sample (i.e., part) orientation?

Reading and Thinking

- What is Lattice, Unit Cell?
- What is Metallic Structures (SC, BCC, FCC, HCP)?
- Ionic Crystals
- Miller-Bravais Indices
- Seven Crystal System
- X-ray diffraction

Metallic Crystals

- Tend to be densely packed.
- Have several reasons for dense packing:
 - Typically, only one element is present. so all atomic radii are the same.
 - Metallic bonding is not directional.
 - Nearest neighbor distances tend to be small in order to lower bond energy.
- Have the simplest crystal structures.

We will look at three such structures...

Unit Cells

Lattice Three dimensional array of points coinciding with atom positions (lattice points).

Lattice point Positions in the structure which are identical.

Unit cell

Smallest and **convenient** repeat unit in the lattice.

Simple Cubic (SC) Structure

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube edges.

1 atoms/unit cell: 8 corners x 1/8

Atomic Packing Factor

• APF for a simple cubic structure = 0.52

Body Centered Cubic (BCC) Structure

• Atoms touch each other along cube diagonals.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

• Coordination # = 8

2 atoms/unit cell: 1 center + 8 corners x 1/8

Atomic Packing Factor : BCC

• APF for a body-centered cubic structure = 0.68

Face Centered Cubic (FCC) Structure

• Atoms touch each other along face diagonals.

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

Atomic Packing Factor : FCC

• APF for a face-centered cubic structure = 0.74

maximum achievable APF

Close-packed directions: length = $4R = \sqrt{2}a$

Unit cell contains: 6 x 1/2 + 8 x 1/8 = 4 atoms/unit cell

FCC Stacking Sequence

- ABCABC... Stacking Sequence
- 2D Projection

A sites

B sites C sites

• FCC Unit Cell

Hexagonal Close-Packed (HCP) Structure

- ABAB... Stacking Sequence
- 3D Projection

A sitesB sitesA sites

- Coordination # = 12
- APF = 0.74

← a →

• *c*/*a* = 1.633

6 atoms/unit cell ex: Cd, Mg, Ti, Zn

Metallic Structure : HCP

$$\frac{c}{a} = \frac{2 \times \sqrt{\frac{8}{3} R}}{2 R} = 1.633$$

$$APF_{HCP} = \frac{\frac{4}{3} \pi r^{3} \times 2}{8\sqrt{2} R^{3}} = 74\%$$

Number of nearest atoms = 12

Theoretical Density_1

Density =
$$\rho$$
 = $\frac{\text{Mass of Atoms in UnitCell}}{\text{Total Volume of UnitCell}}$

$$\rho = \frac{nA}{V_C N_A}$$

- where *n* = number of atoms/unit cell *A* = atomic weight
 - V_C = Volume of unit cell = a^3 for cubic
 - N_{A} = Avogadro's number
 - = 6.023 x 10²³ atoms/mol

Theoretical Density_2

Usage of Density

Comparing X-ray density with bulk density

can check if there are vacant atom sites or

extra atoms (interstitials).

Characteristics of Selected Elements at 20°C

		At. Weight	Density	Crystal	Atomic radius
Element	Symbol	(amu)	(g/cm ³)	Structure	(nm)
Aluminum	AI	26.98	2.71	FCC	0.143
Argon	Ar	39.95			
Barium	Ba	137.33	3.5	BCC	0.217
Beryllium	Be	9.012	1.85	НСР	0.114
Boron	В	10.81	2.34	Rhomb	
Bromine	Br	79.90			
Cadmium	Cd	112.41	8.65	НСР	0.149
Calcium	Ca	40.08	1.55	FCC	0.197
Carbon	С	12.011	2.25	Hex	0.071
Cesium	Cs	132.91	1.87	BCC	0.265
Chlorine	CI	35.45			
Chromium	Cr	52.00	7.19	BCC	0.125
Cobalt	Со	58.93	8.9	НСР	0.125
Copper	Cu	63.55	8.94	FCC	0.128
Flourine	F	19.00			
Gallium	Ga	69.72	5.90	Ortho.	0.122
Germanium	Ge	72.59	5.32	Dia. cubic	0.122
Gold	Au	196.97	19.32	FCC	0.144
Helium	He	4.003			
Hydrogen	Η	1.008			

Adapted from *http://rdarke.weebly.com/uploads/1/7/9/7/1797891/45-characteristics.pdf*

Ceramic Bonding

- Bonding:
 - --Mostly ionic, some covalent.
 - --% ionic character increases with difference in electronegativity.
- Large vs small ionic bond character:

Ionic Bonding & Structure

• Charge Neutrality: --Net charge in the structure should be zero.

--General form: AmXp

m, p determined by charge neutrality

- Stable structures:
 - --maximize the # of nearest oppositely charged neighbors.

Coordination No. and Ionic Radii

• On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation	lonic radius (nm)	 Answer:
AI ³⁺	0.053	r _{cation} 0.077
Fe ²⁺	0.077	$r_{anion} = \overline{0.140}$
Fe ³⁺	0.069	= 0.550
Ca ²⁺	0.100	
		based on this ratio,
Anion		coord # = 6
02-	0.140	structure = NaCI
CI-	0.181	
F ⁻	0.133	

Structure Of Compounds: NaCl

- Compounds: Often have similar close-packed structures.
- Structure of NaCl

• Close-packed directions --along cube edges.

A_mX_p Structures

- Consider CaF₂: $\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.100}{0.133} \approx 0.8$
- Based on this ratio, coord # = 8 and structure = CsCl.
- Result: CsCl structure w/only half the cation sites occupied.

Only half the cation sites
 are occupied since
 #Ca²⁺ ions = 1/2 # F⁻ ions.

Diamond and Perovskite Structure

• Two or more distinct crystal structures for the same material (allotropy/polymorphism)

titanium α, β -Ti carbon diamond, graphite iron system liquid β -Fe $1394^{\circ}C$ FCC γ -Fe $912^{\circ}C$ BCC α -Fe Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

- 7 crystal systems
- 14 crystal lattices

a, b, and c are the lattice constants

Crystal Systems_2

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry	
Cubic	a = b = c	$\alpha=\beta=\gamma=90^{\circ}$	aaa	(P, B, F)
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^\circ, \gamma = 120^\circ$		(P)
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c a a	(P, B)
Rhombohedral (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$		(P)
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$		(P, B, F, B)
Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^\circ \neq \beta$	c at By	(P, B)
Triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$		(P) Table 3.6

© John Wiley & Sons, Inc. All rights reserved.

Five Symmetrical Plane Lattices

Seven Crystal Systems

Seven crystal systems : based on crystal symmetry

Cubic	-	four 3 fold mutually at 70°
Hexagonal	-	one 6 fold
Trigonal	-	one 3 fold (pulled out cubic along diagonal of cubic)
Tetragonal	-	one 4 fold (pulled out cubic along one edge)
Orthorhombic	-	three mutually perpendicular 2 fold
Monoclinic	-	one 2 fold
Triclinic	-	none

Point Coordinates

Point coordinates for unit cell center are

$$a/2, b/2, c/2$$
 $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants → identical position in another unit cell

Crystallographic Directions

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions a, b, and c.
- 3. Adjust to smallest integer values.
- 4. Enclose in square brackets, no commas [uvw].

ex: 1, 0, $\frac{1}{2} \Rightarrow 2, 0, 1 \Rightarrow [201]$

-1, 1, 1 = [111] where overbar represents a negative index

HCP Crystallographic Directions

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions a_1 , a_2 , a_3 , or *c*
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas [*uvtw*]

ex: $\frac{1}{2}, \frac{1}{2}, -1, 0 => [11\overline{2}0]$

 $= \left[11\overline{2}0 \right] \quad a_3 \quad \left[\frac{a_2}{2} \right] \quad a_3 \quad \left[\frac{a_1}{2} \right] \quad a_3 \quad a_1 \quad a_2 \quad a_1 \quad a_3 \quad a_1 \quad a_1 \quad a_2 \quad a_1 \quad a_1 \quad a_1 \quad a_2 \quad a_1 \quad a_1 \quad a_1 \quad a_1 \quad a_2 \quad a_1 \quad a_1 \quad a_1 \quad a_1 \quad a_1 \quad a_2 \quad a_1 \quad a_1 \quad a_1 \quad a_1 \quad a_1 \quad a_2 \quad a_1 \quad a_1$

For hexagonal system (uvtw), t = -(u+v)

Conversion from the three-index system to four-index system $[u'v'w'] \rightarrow [uvtw]$

$$u = \frac{n}{3}(2u'-v')$$
$$v = \frac{n}{3}(2v'-u')$$
$$t = -(u+v)$$
$$w = nw'$$

Direction [uvw], Family of directions <uvw>

- <110> : Face diagonal
- <111> : Cube diagonal
- <100> : Cube edge

Crystallographic Planes_1

Crystallographic Planes_2

Crystallographic Planes_3

b

1

3

- <u>example</u> а 1/2 1 Intercepts 1. Reciprocals 1/1/2 1/1 1/3/4 2. 2 3. Reduction 6
- (634)**Miller Indices** 4.

Family of Planes {hkl}

Ex: $\{100\} = (100), (010), (001), (\overline{1}00), (0\overline{1}0), (00\overline{1})$

Crystallographic Planes (HCP)

In hexagonal unit cells the same idea is used

Crystallographic Directions and Planes

In cubic system, planes are perpendicular to direction.

It does not apply for other systems.

For cubic system,

$$\cos \theta = \frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|}$$

For example, (111), (100)

$$\cos \theta = \frac{1 \times 1 + 1 \times 0 + 1 \times 0}{\sqrt{1^2 + 1^2 + 1^2} \cdot \sqrt{1^2 + 0^2 + 0^2}}$$
$$= \frac{1}{\sqrt{3}}$$

$$\therefore \theta = 54.74^{\circ}$$

cf) directions included in a plane

Close Packed Structure - FCC

Stacking of (111) Planes

Close Packed Structure - HCP

Stacking of (002) planes

Linear Density

• Linear Density of Atoms \equiv LD =

Number of atoms

Unit length of direction vector

Ex) Linear density of AI in [110] direction

a = 0.405 nm

Crystallographic Planes

- We want to examine the atomic packing of crystallographic planes
- Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
 - a) Draw (100) and (111) crystallographic planes for Fe.
 - b) Calculate the planar density for each of these planes.

Planar Density of (100) Iron

Solution: At T < 912°C iron has the BCC structure.

Planar Density of (111) Iron

X-Ray Diffraction

Electromagnetic Spectrum

- Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- Can't resolve spacings $< \lambda$
- Spacing is the distance between parallel planes of atoms.

X-Rays to Confirm Crystal Structure

• Incoming X-rays diffract from crystal planes.

Crystalline and Noncrystalline Materials

X-ray diffraction

: advantages in X-rays for crystal structure analysis

wavelength 0.1~10 Å which is comparable to crystal lattice

Bragg's law : $\lambda = 2d \sin\theta$

Figure 3.38 © John Wiley & Sons, Inc. All rights reserved.

Uses monochromic X-ray $Cu_{K\alpha}$ (1.5418A)

Cubic system
$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

 θ : variable, a : lattice constant

Simple Cubic

all {hkl}

BCC

 $h^2 + k^2 + l^2$ must be even for diffraction. **{110} {200} {211} {220} {310} {222}** $h^2 + k^2 + l^2 = 2, 4, 6, 8, 10, 12$

Out of phase !! ... (100) in BCC does not appear

X-Ray Diffraction Pattern

Importance of X-Ray Diffraction

difference in CsCl and BCC : (100) peak exists but weak

FCC

X-Ray Diffraction

Further Thinking !

- 1. X-Ray System
- 2. How can we get single λ ?
- 3. Diffraction Order
- 4. SC vs BCC
- 5. Alloying Effect
- 6. Why Powder?
- 7. Lattice Parameter Measurement
- 8. Peak Separation (Phase Transformation)

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals

-many ceramics -some polymers

long range order

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures
 -rapid cooling

"Amorphous" = Noncrystalline

short range order

• Si • Oxygen

noncrystalline SiO₂

Energy and Packing

Noncrystalline Solids

• Basic Unit:

 Quartz is crystalline SiO₂:

- Glass is amorphous
- Amorphous structure occurs by adding impurities (Na⁺,Mg²⁺,Ca²⁺, Al³⁺)
- Impurities: interfere with formation of crystalline structure.

Polycrstals

• Most engineering materials are polycrystals.

Adapted from Fig. K, color inset pages of Callister 6e. (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- If crystals are randomly oriented, overall component properties are not directional.
- Crystal sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Crystalline and Noncrystalline Materials

(1) Polycrystal

(2) Anisotropy

- direction of properties
- function of symmetry
- amorphous material \rightarrow isotropic

Single VS Polycrystals

- Single Crystals
 - -Properties vary with direction: anisotropic.
 - -Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
 - -Properties may/may not vary with direction.
 - -If grains are randomly oriented: isotropic. (E_{poly iron} = 210 GPa)
 - -If grains are textured, anisotropic.

Summary

- Atoms may assemble into crystalline or amorphous structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but properties are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.