3.3. Solutions of Laplace Equation
The Laplace equation is an elliptic type partial differential equation which
requires boundary conditions on all surrounding boundaries. The Laplace
equation can be solved by such techniques as Laplace transform, separation of
variables and others. Here, we use a simpler one, the separation of variables.

The procedure is as follows:

1. First of all, the solution form is assumed to be periodic both in horizontal

axis and time. Then

o=0d(x, 2z, t)=0(0, 2
in which ©=x—ct with ¢ being the phase speed (celerity) defined as
c=wo/k. That is, a periodic function both in time and in x-axis is

assumed. This can be viewed as lateral boundary conditions for the Laplace

equation.

2. The velocity potential function can be written as

o (0, 20=G(6) Z(2)

Then by using the separation of variables the governing equation is expressed
as

0go®+0,06=0

G'IG+Z"1Z=0

G ,’/G:—Z,’/Z:—kz

3. Since G and Z are functions of 6(x, ) and z, respectively, k is a constant
and we may have

G'+KG=0, G=(cosko, sinko)

7"'— k2=, Z=(e™#, e =)

We then obtain



TABLE 3.1 Possible Solutions to the Laplace Equation, Based on Separation

of Variables
Character of &, the Ordinary Differential
Separation Constant : - Equations Solutions
Real %+k1X=O X(x) = A cos kx + B sin kx
k>0 ﬂ—k’Z:O Z(z) = C&” + De™™
dz?
k=0 : ax :
—=0 X{(x)=Ax+B
@ e
d’_Z =0 Z(2)=Cz+D
dz?
imaginary
<0 k=ilk] %-mﬁxso X(x) = Ae'*1* 4 Be-ikix
|k | = magnitude of k f?zﬂk[zz___o Z(z)=Ccos |kiz+Dsin |k|z
d .
o= GZ

= (C,cos ko + C,sin k0)x(C, e+ Cje™*)
in which €, C,, C;, C; are integral constants. From the SBC (BBC)

w=0, z=—
Then,
0,0 =k(C| cos k6+ C,sin k0)x(Cye ¥ —C,eM)=(

4. Since C,cos K0+ C,sin k0 +0, Cye ™ —C,e™=0 for nontrivial solutions.
Thus, we have C;= C, e** and
Céekz_‘_ qe—kz _ qekh (ek(z+h) +e—k(z+h))
= (" 2coshk(z+h)

= Cicoshk(z+h)

in which Cy is an integral constant. And

Cicosko + C,sinko = Cysin (k6 +6)

5. Finally, we have
® = Ccoshk(z+ h)xsin(kx—wt)
in which we set the phase shift, 6, at zero without loss of generality and

C is still a constant to be determined. The function © 1is defined as



© = x— ¢t and the phase function S is also defined as S= kx— ot= kO .

6. To determine the constant C we first define the free surface displacement as
U= acos (kx— ot)

Now, we can use DFSBC to determine the unknown constant C.

7. The constant is then determined as C= ga/(w coshkh). Finally, we can

have the velocity potential function given by

_ ga coshk(z+h) . _
o= - ~osh & sin (kx— o)

This is the velocity potential function which satisfies all boundary conditions
and this velocity potential function also implies that water particles can

move due to wave motion.

3.4. Dispersion Relation
3.4.1. dispersion relation
a. To derive the dispersion relation we can use the CFSBC, that is
0,0+ gw=0, z=0
By substituting the velocity potential function into the CFSBC, we obtain
w?= gktanh kh
in which tanhkh can be expanded by Taylor series if A is small enough, that is
tanhkh ~ kh — (kh)®/3 + -+
b. shallow water depth limit, that is &h2— 0
o’ ~ gi’h
ct =gh
Thus, the phase speed is no longer dependent on the wavenumber (or
wavelength). This type wave is called a nondispersive wave. In very

shallow water, the wave speed is only a function of water depth. This is

already discussed in hydraulics.

c. deep water depth limit, that is k2— oo (tanhkh—1 as kh— )



0’ = gk

=gk
Thus, the phase speed is dependent on the wavenumber (or wavelength).
This type wave is called a dispersive wave. In very deep water, the wave
speed is nothing to do with water depth. The phase speed is only a

function of wavelength.

d. It is remarked that it is still not well defined the limits for both shallow

and deep water depths. In coastal engineering, however, the shallow

water depth is generally defined as kA< (.ln, whereas the deep water

depth is defined as kA> n. The water depth between the shallow and

the deep water depths is called intermediate water depth. In spite of
these criteria, you should depend on your experience to judge a water

depth in many practical and theoretical problems.

e. physical meaning of the dispersion relation
As discussed previously, the wave speed can be calculated from the

dispersion relation, that is

1/2
0?= gktanh kh, c= (7‘; tanh de)

As seen in the dispersion relation the longer wave can propagate faster
than the shorter wave. This is the physical meaning of the dispersion

relation.



