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  First-Order Circuits (Chapter 7)  

 Circuits with a single storage element (a capacitor 
or an inductor).  

 The differential equations describing them are 
first-order. 

  Second-Order Circuits (Chapter 8)  

 Circuits containing two storage elements  

 Their responses are described by differential equations that contain second derivatives. 

 Typical examples of second-order circuits are RLC circuits. 

𝑑𝑣𝐶
𝑑𝑡
+
𝑣𝐶 − 𝑉𝑠
𝑅𝐶

= 0 

𝑖(𝑡) 

𝑑𝑖

𝑑𝑡
+
𝑅𝑖 − 𝑉𝑠
𝐿

= 0 

𝑣𝐶 

A second-order circuit is characterized by 
a second-order differential equation.  

It consists of resistors and the equivalent 
of two energy storage elements. 

 There are two basic types of RLC circuits: parallel connected and series connected. 

8.1 Introduction to the Natural Response of 
a Parallel RLC Circuit 
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  Finding Initial Values 

 There are two key points to keep in mind in determining the initial conditions. 

• We must carefully handle the polarity of voltage 𝑣𝐶(𝑡) across the capacitor and the direction 
of the current 𝑖𝐿(𝑡) through the inductor.  

Keep in mind that 𝑣𝐶(𝑡) and 𝑖𝐿(𝑡)  are defined strictly according to the passive sign 
convention. 

One should carefully observe how these are defined and apply them accordingly. 

• Keep in mind that the capacitor voltage is always continuous so that 

𝑣𝑐 0
+ = 𝑣𝐶(0

−) 

and the inductor current is always continuous so that 

𝑖𝐿 0
+ = 𝑖𝐿(0

−) 

where 𝑡 = 0− denotes the time just before a switching event 
and 𝑡 = 0+ is the time just after the switching event, 
assuming that the switching event takes place at t = 0. 

 Thus, in finding initial conditions, we first focus on those variables that cannot change abruptly, 
capacitor voltage and inductor current. 
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  Obtaining of the Differential Equation for a Parallel RLC Circuit 

𝑖𝐿 0 =
1

𝐿
 𝑣 𝑡 𝑑𝑡
0

−∞

= 𝐼𝑜 

 Parallel RLC circuits find many practical applications, 
notably in communications networks and filter designs. 

 Assume initial inductor current I0 and initial capacitor 
voltage V0, 

𝑣

𝑅
+
1

𝐿
 𝑣 𝑡 𝑑𝑡
𝑡

−∞

+ 𝐶
𝑑𝑣

𝑑𝑡
= 0 

𝑣𝑐 0 = 𝑉𝑜 

 Since the three elements are in parallel, they have the same voltage v across them. 
Applying KCL at the top node gives 

𝑖𝑅 + 𝑖𝐿 + 𝑖𝐶 = 0 

𝑣

𝑅
+
1

𝐿
 𝑣 𝑡 𝑑𝑡
0

−∞

+
1

𝐿
 𝑣 𝑡 𝑑𝑡
𝑡

0

+ 𝐶
𝑑𝑣

𝑑𝑡
= 0 

𝑣

𝑅
+ 𝐼𝑜 +

1

𝐿
 𝑣 𝑡 𝑑𝑡
𝑡

0

+ 𝐶
𝑑𝑣

𝑑𝑡
= 0 (8.1) 
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  Obtaining of the Differential Equation for a Parallel RLC Circuit 

 Taking the derivative with respect to t results in 

𝑣

𝑅
+ 𝐼𝑜 +

1

𝐿
 𝑣 𝑡 𝑑𝑡
𝑡

0

+ 𝐶
𝑑𝑣

𝑑𝑡
= 0 (8.1) 

1

𝑅

𝑑𝑣

𝑑𝑡
+
𝑣

𝐿
+ 𝐶

𝑑2𝑣

𝑑𝑡2
= 0 (8.2) 

 Dividing by C Arranging the derivatives in the descending order, we get 

𝑑2𝑣

𝑑𝑡2
+
1

𝑅𝐶

𝑑𝑣

𝑑𝑡
+
𝑣

𝐿𝐶
= 0 (8.3) 

This is a second-order differential equation and is 
the reason for calling the RLC circuits in this chapter 
second-order circuits. 
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  Solution of the Differential Equation 
 Our experience in the preceding chapter on first-order circuits suggests that the solution is 

of exponential form. So we let 

𝑑2𝑣

𝑑𝑡2
+
1

𝑅𝐶

𝑑𝑣

𝑑𝑡
+
𝑣

𝐿𝐶
= 0 (8.3) 𝑣 𝑡 = 𝐴𝑒𝑠𝑡 (8.4) 

where A and s are unknown constants. 

 Substituting Eq. (8.4) into Eq. (8.3) and carrying out the necessary differentiations, 
we obtain 

𝐴𝑠2𝑒𝑠𝑡 +
𝐴𝑠

𝑅𝐶
𝑒𝑠𝑡 +

𝐴𝑒𝑠𝑡

𝐿𝐶
= 0 

or 

𝐴𝑒𝑠𝑡 𝑠2 +
1

𝑅𝐶
𝑠 +

1

𝐿𝐶
= 0 

𝑒𝑠𝑡 ≠ 0 Since  

𝑠2 +
1

𝑅𝐶
𝑠 +

1

𝐿𝐶
= 0 

We cannot A=0 as a general solution because the voltage is not zero for all time and 

𝐴𝑒𝑠𝑡 is the assumed solution we are trying to find. 

(8.5) 

(8.6) 
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  Solution of the Differential Equation 

𝑠2 +
1

𝑅𝐶
𝑠 +

1

𝐿𝐶
= 0 (8.6) 

 Eq.(8.6) is known as the characteristic equation of the differential Eq. (8.3), 
since the roots of the equation determine the mathematical character of v(t).  

 The two roots of Eq. (8.8) are 

𝑠1 = −
1

2𝑅𝐶
+

1

2𝑅𝐶

2

−
1

𝐿𝐶
 

𝑠2 = −
1

2𝑅𝐶
−

1

2𝑅𝐶

2

−
1

𝐿𝐶
 

(8.7) 

(8.8) 

𝑑2𝑣

𝑑𝑡2
+
1

𝑅𝐶

𝑑𝑣

𝑑𝑡
+
𝑣

𝐿𝐶
= 0 (8.3) 
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a Parallel RLC Circuit 

  Solution of the Differential Equation 
 The two values of s in Eqs.(8.7) and (8.8) indicate that there are two possible solutions 

for i, each of which is of the form of the assumed solution in Eq. (8.4); that is, 

𝑣1 = 𝐴1𝑒
𝑠1𝑡 

𝑣2 = 𝐴2𝑒
𝑠2𝑡 

 Since Eq. (8.3) is a linear equation, any linear combination of the two distinct solutions v1 
and v2 is also a solution of Eq. (8.3).  

 A complete or total solution of Eq. (8.3) would therefore require a linear combination of v1 
and v2.  

 Thus, the natural response of the parallel RLC circuit is  

𝑣 𝑡 = 𝑣1 + 𝑣2 = 𝐴1𝑒
𝑠1𝑡 +𝐴2𝑒

𝑠2𝑡 (8.9) 

where the constants A1 and A2 are determined from the initial values v(0) and dv(0)/dt . 

𝑑2𝑣

𝑑𝑡2
+
1

𝑅𝐶

𝑑𝑣

𝑑𝑡
+
𝑣

𝐿𝐶
= 0 (8.3) 
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a Parallel RLC Circuit 

  Solution of the Differential Equation 

 We can show that Eq.(8.9) also is a solution. 

𝑑𝑣

𝑑𝑡
= 𝐴1𝑠1𝑒

𝑠1𝑡 + 𝐴2𝑠2𝑒
𝑠2𝑡 

𝑑2𝑣

𝑑𝑡2
= 𝐴1𝑠1

2𝑒𝑠1𝑡 + 𝐴2𝑠2
2𝑒𝑠2𝑡 

𝑣 𝑡 = 𝐴1𝑒
𝑠1𝑡 +𝐴2𝑒

𝑠2𝑡 

𝑑2𝑣

𝑑𝑡2
+
1

𝑅𝐶

𝑑𝑣

𝑑𝑡
+
𝑣

𝐿𝐶
= 0 

𝐴1𝑒
𝑠1𝑡 𝑠1

2 +
1

𝑅𝐶
𝑠1 +

1

𝐿𝐶
+ 𝐴2𝑒

𝑠2𝑡 𝑠2
2 +

1

𝑅𝐶
𝑠2 +

1

𝐿𝐶
= 0 

(8.9) 

(8.3) 

• Each parenthetical term is zero because by definition 𝑠1 and 𝑠2 are roots of the characteristic 
equation. 

(8.12) 

𝑠1
2 +

1

𝑅𝐶
𝑠1 +

1

𝐿𝐶
= 0 

𝑠2
2 +

1

𝑅𝐶
𝑠2 +

1

𝐿𝐶
= 0 

𝑠2 +
1

𝑅𝐶
𝑠 +

1

𝐿𝐶
= 0 (8.6) 
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 We have shown that 𝑣1 is a solution, 𝑣2 is a solution, and  𝑣1+𝑣2 is a solution. 
Therefore, the general solution of Eq.(8.3) has the form given in Eq.(8.13).   

𝑣 𝑡 = 𝐴1𝑒
𝑠1𝑡 +𝐴2𝑒

𝑠2𝑡 (8.13), (8.9) 

 The behavior of v(t) depends on the values of 𝑠1and 𝑠2. 

𝑠1 = −
1

2𝑅𝐶
+

1

2𝑅𝐶

2

−
1

𝐿𝐶
= −𝛼 + 𝛼2 − 𝜔𝑜

2 

𝑠2 = −
1

2𝑅𝐶
−

1

2𝑅𝐶

2

−
1

𝐿𝐶
= −𝛼 − 𝛼2 − 𝜔𝑜

2 

(8.14) 

(8.15) 

𝛼 =
1

2𝑅𝐶
 𝜔𝑜 =

1

𝐿𝐶
 

  Definition of Frequency Terms 

 Since the exponents 𝑠1𝑡 and 𝑠2𝑡 must be dimensionless,  𝑠1 and  𝑠2 must have the unit of “per 
second”.  

(8.16) (8.17) 
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  Definition of Frequency Terms 

 Therefore, the units of 𝛼 and 𝜔𝑜 must also be “per second” or s−1. A unit of this type is  called 
frequency. 

𝛼 =
1

2𝑅𝐶
 

𝜔𝑜 =
1

𝐿𝐶
 

 Let us define new terms: 

• Neper frequency (exponential damping coefficient) 

• Resonant frequency 

• Complex frequency 

𝑠1, 𝑠2 

(8.16) 

(8.17) 
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  Types of Responses(solutions)  

 From Eqs. (8.14),(8.15), we can infer that there are three types of solutions depending on 
the relative sizes of 𝛼 and 𝜔𝑜: 

𝑠1 = −𝛼 + 𝛼2 − 𝜔𝑜
2 𝑠2 = −𝛼 − 𝛼2 − 𝜔𝑜

2 (8.14) (8.15) 

• Overdamped response : 

• Critically damped response 

• Underdamped response 

𝛼 =
1

2𝑅𝐶
 𝜔𝑜 =

1

𝐿𝐶
 

𝛼2 > 𝜔𝑜
2 

𝛼2 = 𝜔𝑜
2 

𝛼2 < 𝜔𝑜
2 

If              , both roots s1 and s2 are negative and real.  

If              ,  𝑠1 = 𝑠2 = −𝛼 

If              , both roots s1 and s2 are complex and, in addition, are conjugates of each other. 

𝑠1 = −𝛼 + 𝛼2 − 𝜔𝑜
2 = −𝛼 + − 𝜔𝑜

2 − 𝛼2 = −𝛼 + 𝑗𝜔𝑑 

𝑠2 = −𝛼 − 𝛼2 − 𝜔𝑜
2 = −𝛼 − − 𝜔𝑜

2 − 𝛼2 = −𝛼 − 𝑗𝜔𝑑 

𝐿 > 4𝑅2𝐶 → 

𝐿 = 4𝑅2𝐶 → 

𝐿 < 4𝑅2𝐶 → 

𝛼 > 𝜔𝑜 

𝛼 = 𝜔𝑜 

𝛼 < 𝜔𝑜 
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  What is the damping?  

 Undamped System 

The following physical systems are some examples of simple harmonic oscillator. 

An undamped spring–mass 

system undergoes simple 

harmonic motion 

The motion of an undamped pendulum 
approximates to simple harmonic motion 
if the angle of oscillation is small 
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 Damped System 

Underdamped 
spring–mass 
system 

A release from rest at a position x0. 

𝑥𝑜 

Underdamped Response 
The mass will overshoot the zero point 
and oscillate about x=0. 

• Damping is a dissipation of energy from a vibrating 
structure.  

• The term dissipate is used to mean  the transformation 
of mechanical  energy into other form of energy and, 
therefore, a removal of mechanical energy from the 
vibrating system. 

Overdamped Response 
The system returns (exponentially decays) to 
equilibrium without oscillating.  

Critically Damped Response 
The system returns to equilibrium as 
quickly as possible without oscillating. 
This is often desired for the damping of 
systems such as doors.  

Elastic 
potential 
energy↑ 

𝑥 

Damped harmonic oscillator 

𝑚 

𝑚 

𝑥 = 0 

𝑥𝑜 
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  Electrical System 
• The capacitor stores energy in its electric field E and the inductor 

stores energy in its magnetic field B (green).  

• The charge flows back and forth between the plates of the capacitor, 
through the inductor.  

• The energy oscillates back and forth between the capacitor and the 
inductor until (if not replenished from an external circuit) internal 
resistance makes the oscillations die out. 

𝑉𝑜 

𝑉𝑜 

Energy oscillations in the LC Circuit and the mass-spring system  

𝑥𝑜 

𝑥 = 0 
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  Electrical System 

Charging 
system. 

• We now consider a RLC circuit which contains a resistor, an inductor and a capacitor. 
• Unlike the LC circuit energy will be dissipated through the resistor. 
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  The Overdamped Voltage Response 

 If 𝐿 > 4𝑅2𝐶, α > 𝜔𝑜. 

    The roots of the characteristic equation are negative real numbers. 

𝑣 𝑡 = 𝐴1𝑒
𝑠1𝑡 +𝐴2𝑒

𝑠2𝑡 

 The response is 

𝑠1 = −𝛼 + 𝛼2 − 𝜔𝑜
2 

𝑠2 = −𝛼 − 𝛼2 − 𝜔𝑜
2 

𝛼 =
1

2𝑅𝐶
 𝜔𝑜 =

1

𝐿𝐶
 

 The process for finding the overdamped response, v(t): 

(1) Find 𝑠1 and 𝑠2, using the values of R, L, and C. 

(2) Find 𝑣(0+) and 𝑑𝑣(0+) 𝑑𝑡 . 

(3) Find the values of A1 and A2 using 𝑣(0+) and 𝑑𝑣(0+) 𝑑𝑡 . 

(4) Substitute the values for 𝑠1 , 𝑠2, A1 and A2 into Eq.(8.18). 

(8.18) 

𝑉𝑜 

http://en.wikipedia.org/wiki/File:Tuned_circuit_animation_3.gif
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  The Overdamped Voltage Response 

• Two initial conditions 

𝑣 0+ = 𝑉𝑜 

𝑖𝐶 = 𝐶
𝑑𝑣

𝑑𝑡
 

𝑖𝐶 + 𝑖𝐿 + 𝑖𝑅 = 0 

𝑖𝐶(0
+) + 𝑖𝐿(0

+) + 𝑖𝑅(0
+) = 0 = −

𝑖𝐿 0
+ + 𝑖𝑅 0

+

𝐶
 

 

  = −
𝐼𝑜
𝐶
−
𝑉𝑜
𝐶𝑅

 𝑖𝐶 0
+ = −𝑖𝐿 0

+ − 𝑖𝑅 0
+ = −𝐼𝑜 −

𝑉0
𝑅

 

𝑑𝑣(0+)

𝑑𝑡
=
𝑖𝐶(0

+)

𝐶
 (8.21) 

(8.22) 

(2) Find 𝑣(0+) and 𝑑𝑣(0+) 𝑑𝑡 . 

𝑉𝑜 

 The process for finding the overdamped response, v(t): 

http://en.wikipedia.org/wiki/File:Tuned_circuit_animation_3.gif
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  The Overdamped Voltage Response 

𝑣 0+ = 𝐴1 + 𝐴2 = 𝑉𝑜 

𝑑𝑣(0+)

𝑑𝑡
= 𝑠1𝐴1 + 𝑠2𝐴2 

(8.23) 

(8.24) 

(3) Find the values of A1 and A2 using 𝑣(0+) and 𝑑𝑣(0+) 𝑑𝑡 . 

𝑣 𝑡 = 𝐴1𝑒
𝑠1𝑡 +𝐴2𝑒

𝑠2𝑡 (8.18) 

𝑑𝑣(𝑡)

𝑑𝑡
= 𝑠1𝐴1𝑒

𝑠1𝑡 + 𝑠2𝐴2𝑒
𝑠2𝑡 

 The process for finding the overdamped response, v(t): 
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  The Underdamped Voltage Response 

 If 𝐿 < 4𝑅2𝐶, α < 𝜔𝑜. 

   The roots of the characteristic equation are complex, and the response is underdamped. 

 The response is 

𝛼 =
1

2𝑅𝐶
 𝜔𝑜 =

1

𝐿𝐶
 

(8.28) 

𝑠1 = −𝛼 + 𝛼2 − 𝜔𝑜
2 = −𝛼 + − 𝜔𝑜

2 − 𝛼2 = −𝛼 + 𝑗 𝜔𝑜
2 − 𝛼2 = −𝛼 + 𝑗𝜔𝑑 

𝑠2 = −𝛼 − 𝛼2 − 𝜔𝑜
2 = −𝛼 − 𝑗𝜔𝑑 

𝜔𝑑 = 𝜔𝑜
2 − 𝛼2 

(8.25) 

(8.26) 

𝑣(𝑡) = 𝑒−𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 
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   Finding The Underdamped Voltage Response 

𝑣 𝑡 = 𝐴1𝑒
− 𝛼−𝑗𝜔𝑑 𝑡 + 𝐴2𝑒

− 𝛼+𝑗𝜔𝑑 𝑡 

The natural response is  

= 𝑒−𝛼𝑡(𝐴1𝑒
𝑗𝜔𝑑𝑡 + 𝐴2𝑒

−𝑗𝜔𝑑𝑡) 

Using Euler’s identities,  

𝑒𝑗𝜃 = cos𝜃 + 𝑗 sin 𝜃 𝑒−𝑗𝜃 = cos 𝜃 − 𝑗 sin 𝜃 

We get 

𝑣(𝑡) = 𝑒−𝛼𝑡[𝐴1(cos𝜔𝑑𝑡 + 𝑗 sin𝜔𝑑𝑡) + 𝐴2 (cos𝜔𝑑𝑡 − 𝑗 sin𝜔𝑑𝑡)] 

= 𝑒−𝛼𝑡[(𝐴1 + 𝐴2) cos𝜔𝑑𝑡 + 𝑗(𝐴1 − 𝐴2) sin𝜔𝑑𝑡] 

𝑣(𝑡) = 𝑒−𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 

𝐵1 = 𝐴1 + 𝐴2 𝐵2 = 𝑗(𝐴1 − 𝐴2) 

(8.28) 𝑣(𝑡) = 𝑒−𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 

← 𝑣 𝑡 = 𝐴1𝑒
𝑠1𝑡 +𝐴2𝑒

𝑠2𝑡 

𝑠1 = −𝛼 + 𝑗𝜔𝑑 

𝑠1 = −𝛼 − 𝑗𝜔𝑑 

(8.29) 

(8.28) 

  The Underdamped Voltage Response 
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  The Underdamped Voltage Response 

(8.28) 𝑣(𝑡) = 𝑒−𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 

𝑒−𝛼𝑡 

With the presence of sine and cosine functions, it is clear that the natural response for this case 
is exponentially damped and oscillatory in nature. 

The response has a time constant of  1/𝛼 and a period of  𝑇 = 2𝜋/𝜔𝑑.  

Figure  depicts a typical underdamped response. [Figure assumes for each case that i(0) = 0].  

𝑉𝑜 

http://en.wikipedia.org/wiki/File:Tuned_circuit_animation_3.gif
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𝑣 0+ = 𝐵1 + 0 = 𝑉𝑜 

𝑑𝑣(0+)

𝑑𝑡
= −𝛼𝐵1 + 𝜔𝑑𝐵2 

(8.30) 

(8.31) 

  Find the values of B1 and B2 using 𝑣(0+) and 𝑑𝑣(0+) 𝑑𝑡 . 

(8.28) 

  The Underdamped Voltage Response 

𝑣(𝑡) = 𝑒−𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 

𝑑𝑣(𝑡)

𝑑𝑡
= (−𝛼𝑒−𝛼𝑡)(𝐵1 cos𝜔𝑑𝑡 ) + 𝑒

−𝛼𝑡(−𝜔𝑑𝐵1 sin𝜔𝑑𝑡 ) 

+(−𝛼𝑒−𝛼𝑡)(𝐵2 sin𝜔𝑑𝑡 ) + 𝑒
−𝛼𝑡(𝜔𝑑𝐵2 cos𝜔𝑑𝑡 ) 
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  The Critically Damped Voltage Response 

 If 𝐿 = 4𝑅2𝐶, α = 𝜔𝑜. 

    The two roots of the characteristic equation are real and equal. 

 The response is 

𝛼 =
1

2𝑅𝐶
 𝜔𝑜 =

1

𝐿𝐶
 

(8.34) 

𝑠1 = −𝛼 + 𝛼2 − 𝜔𝑜
2 = −𝛼 

𝑠2 = −𝛼 − 𝛼2 − 𝜔𝑜
2 = −𝛼 

(8.32) 𝑠1 = 𝑠2 = −𝛼 = −
1

2𝑅𝐶
 

𝑣 𝑡 = (𝐷1𝑡 + 𝐷2)𝑒
−𝛼𝑡 



CIEN346  Electric Circuits        Nam Ki Min   010-9419-2320    nkmin@korea.ac.kr 

Chapter 8 Natural and Step Responses of RLC Circuits 
26 8.2 The Forms of the Natural Response of 

a Parallel RLC Circuit 

  The Critically Damped Voltage Response 

 Finding the natural response (Eq.8.34) 

𝑑2𝑣

𝑑𝑡2
+
1

𝑅𝐶

𝑑𝑣

𝑑𝑡
+
𝑣

𝐿𝐶
= 0 (8.3) 

𝛼 = 𝜔𝑜 =
1

2𝑅𝐶
=

1

𝐿𝐶
 

𝑑2𝑣

𝑑𝑡2
+ 2𝛼

𝑑𝑣

𝑑𝑡
+ 𝛼2𝑣 = 0 

𝑑

𝑑𝑡

𝑑𝑣

𝑑𝑡
+ 𝛼𝑣 + 𝛼

𝑑𝑣

𝑑𝑡
+ 𝛼𝑣 = 0 

If we let  

𝑓 =
𝑑𝑣

𝑑𝑡
+ 𝛼𝑣 

𝑑𝑓

𝑑𝑡
+ 𝛼𝑓 = 0 

then Eq.(3) becomes 

(1) 

(2) 

(3) 

(4) 

(5) 

Eq.(3) is a first-order differential equation with 
solution 

𝑓 = 𝐴1𝑒
−𝛼𝑡 (6) 

Eq.(4) then becomes 

𝑑𝑣

𝑑𝑡
+ 𝛼𝑣 = 𝐷1𝑒

−𝛼𝑡 or 𝑒
𝛼𝑡
𝑑𝑣

𝑑𝑡
+ 𝑒𝛼𝑡𝛼𝑣 = 𝐷1 

This can be written as 

𝑑(𝑒𝛼𝑡𝑣)

𝑑𝑡
= 𝐷1 

(7) 

(8) 
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  The Critically Damped Voltage Response 

Integrating both sides yields 

𝑑(𝑒𝛼𝑡𝑣)

𝑑𝑡
= 𝐷1 (8) 

𝑑(𝑒𝛼𝑡𝑣) = 𝐷1𝑑𝑡 

𝑒𝛼𝑡𝑣 = 𝐷1𝑡 + 𝐷2 (9) 

or 

𝑣(𝑡) = (𝐷1𝑡 + 𝐷2)𝑒
−𝛼𝑡 (8.34) 

This is a typical critically damped response.         
The natural response of the critically damped circuit 
is a sum of two terms: a negative exponential and a 
negative exponential multiplied by a linear term. 

𝑣(𝑡) 
Figure is a sketch of  𝑣(𝑡) = 𝑡𝑒−𝛼𝑡, 
which reaches a maximum value of 
𝑒−1/𝛼 at 𝑡 = 1/𝛼, one time constant, 
and then decays all the way to zero. 

𝑉𝑜 

 Finding the natural response (Eq.8.34) 

http://en.wikipedia.org/wiki/File:Tuned_circuit_animation_3.gif
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  The Critically Damped Voltage Response 

  Finding the values of D1 and D2 using 𝒗(𝟎+) and 𝒅𝒗(𝟎+) 𝒅𝒕 . 

𝑉𝑜 

𝑣 0+ = 0 + 𝐷2 = 𝑉𝑜 

𝑑𝑣(0+)

𝑑𝑡
= 𝐷1 − 𝛼𝐷2 

(8.35) 

(8.36) 

(8.34) 

𝑑𝑣(𝑡)

𝑑𝑡
= 𝐷1 + 0 𝑒

−𝛼𝑡 + 𝐷1𝑡 + 𝐷2 (−𝛼𝑒
−𝛼𝑡) 

𝑣(𝑡) = (𝐷1𝑡 + 𝐷2)𝑒
−𝛼𝑡 

http://en.wikipedia.org/wiki/File:Tuned_circuit_animation_3.gif
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Both roots s1 and s2 are negative and real.  

8.3 The Step Response of a Parallel RLC Circuit 

  Natural Response: Summary 

  Responses of Parallel RLC Circuit 

• The circuit is being excited by the energy initially stored in the 
capacitor and inductor.  

• The energy is represented by the initial capacitor voltage 𝑉𝑜 and 
initial inductor current 𝐼𝑜.  

• Thus, at t = 0, 

𝑣𝐶 0 =
1

𝐶
 𝑖 𝑡 𝑑𝑡
0

−∞

= 𝑉𝑜 𝑖 0 = 𝐼𝑜 

• Overdamped response: 

• Critically damped response:  

𝛼2 > 𝜔𝑜
2 

𝛼2 = 𝜔𝑜
2 

𝑠1 = 𝑠2 = −𝛼 

𝐿 > 4𝑅2𝐶  

𝐿 = 4𝑅2𝐶  

𝑠1 = −𝛼 + 𝛼2 − 𝜔𝑜
2 𝑠2 = −𝛼 − 𝛼2 − 𝜔𝑜

2 𝑣 𝑡 = 𝐴1𝑒
𝑠1𝑡 +𝐴2𝑒

𝑠2𝑡 

𝑣(𝑡) = (𝐷1𝑡 + 𝐷2)𝑒
−𝛼𝑡 

The two roots of the characteristic equation are real and equal. 

• Underdamped response:  𝛼2 < 𝜔𝑜
2 

𝑠1 = −𝛼 + 𝑗𝜔𝑑 𝑠2 = −𝛼 − 𝑗𝜔𝑑 

𝐿 < 4𝑅2𝐶  

𝑣(𝑡) = 𝑒−𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 

The roots of the characteristic equation are complex. 
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  Responses of Parallel RLC Circuit 

 Step Response 

• The step response is obtained by the sudden application 
of a dc source.  

𝑖(𝑡) 

𝑡 

𝐼 

0 

•  We want to find i due to a sudden application of a dc 
current. 

• To develop a general approach to finding the step response 
of a second order circuit, we focus on finding the current in 
the inductor branch, 𝑖𝐿.  

   This current does not approach zero as t increases.  

𝑖𝐿 ∞ = 𝐼 
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  Step Response 

(8.37)  

•  Applying KCL at the top node for t > 0, 

𝑖𝐿 + 𝑖𝑅 + 𝑖𝐶 = 𝐼 

or 

𝑖𝐿 +
𝑣

𝑅
+ 𝐶

𝑑𝑣

𝑑𝑡
= 𝐼 

• From the definition 

𝑣 = 𝐿
𝑑𝑖𝐿
𝑑𝑡

 

𝑑𝑣

𝑑𝑡
= 𝐿

𝑑2𝑖𝐿
𝑑𝑡2

 

(8.38)  

(8.39)  

• Substituting Eqs.(8.38) and (8.39) into Eq.(8.37) gives 

𝑖𝐿 +
𝐿

𝑅

𝑑𝑖𝐿
𝑑𝑡
+ 𝐿𝐶

𝑑2𝑖𝐿
𝑑𝑡2

= 𝐼 

𝑑2𝑖𝐿
𝑑𝑡2

+
1

𝑅𝐶

𝑑𝑖𝐿
𝑑𝑡
+
𝑖𝐿
𝐿𝐶
=
𝐼

𝐿𝐶
 

(8.40)  

(8.41)  
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𝑑2𝑖𝐿
𝑑𝑡2

+
1

𝑅𝐶

𝑑𝑖𝐿
𝑑𝑡
+
𝑖𝐿
𝐿𝐶
=
𝐼

𝐿𝐶
 (8.41)  

𝑖𝐿 𝑡 = 𝑖𝑛(𝑡) + 𝑖𝑓(𝑡) 

• The complete solution to Eq. (8.41) consists of the natural 
response 𝑖𝑛 and the forced response 𝑖𝑓; that is,, 

• The natural response is the same as what we had in Section 8.2.  

• The forced response is the steady state or final value of 𝑖.  

In the circuit in Fig.8.11, the final value of the current through the inductor is the same as the source 
current 𝐼. Thus, 

𝑣 𝑡 = 𝐴1𝑒
𝑠1𝑡 +𝐴2𝑒

𝑠2𝑡 

𝑣(𝑡) = (𝐷1𝑡 + 𝐷2)𝑒
−𝛼𝑡 

𝑣(𝑡) = 𝑒−𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 

𝑖𝑛(𝑡) = 𝐴1𝑒
𝑠1𝑡 +𝐴2𝑒

𝑠2𝑡 

𝑖𝑛(𝑡) = 𝑒
−𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 

𝑖𝑛(𝑡) = (𝐷1𝑡 + 𝐷2)𝑒
−𝛼𝑡 

𝑖𝑓 𝑡 = 𝐼 
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𝑖𝐿 𝑡 = 𝑖𝑛(𝑡) + 𝑖𝑓(𝑡) 

• The complete solutions: 

• Overdamped response 

𝑖𝑛(𝑡) = 𝐴1𝑒
𝑠1𝑡 +𝐴2𝑒

𝑠2𝑡 

𝑖𝑛(𝑡) = 𝑒
−𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 

𝑖𝑛(𝑡) = (𝐷1𝑡 + 𝐷2)𝑒
−𝛼𝑡 

𝑖𝑓 𝑡 = 𝐼 

𝑖𝑓 𝑡 = 𝐼 
𝑖𝐿 𝑡 = 𝐼 + 𝐴1𝑒

𝑠1𝑡 +𝐴2𝑒
𝑠2𝑡 

• Underdamped response 

𝑖𝑓 𝑡 = 𝐼 
𝑖𝐿 𝑡 = 𝐼 + 𝑒

−𝛼𝑡(𝐵1 cos𝜔𝑑𝑡 + 𝐵2 sin𝜔𝑑𝑡) 

• Critically damped response 

𝑖𝐿 𝑡 = 𝐼 + (𝐷1𝑡 + 𝐷2)𝑒
−𝛼𝑡 

(8.47)  

(8.48)  

(8.49)  


