Applications of Boolean Algebra/ Minterm and Maxterm Expansions

This chapter in the book includes:
Objectives
Study Guide
4.1 Conversion of English Sentences to Boolean Equations
4.2 Combinational Logic Design Using a Truth Table
4.3 Minterm and Maxterm Expansions
4.4 General Minterm and Maxterm Expansions
4.5 Incompletely Specified Functions
4.6 Examples of Truth Table Construction
4.7 Design of Binary Adders and Subtracters Problems
-Conversion of English Sentences to Boolean Equations
-Combinational Logic Design Using a Truth Table
-Minterm and Maxterm Expansions
-General Minterm and Maxterm Expansions
-Incompletely Specified Functions (Don't care term)
-Examples of Truth Table Construction
-Design of Binary Adders(Full adder) and Subtracters

4.1 Conversion of English Sentences to Boolean Equations

- Steps in designing a single-output combinational switching circuit

1. Find switching function which specifies the desired behavior of the circuit
2. Find a simplified algebraic expression for the function
3. Realize the simplified function using available logic elements
4. F is 'true' if A and B are both 'true' $\rightarrow F=A B$

4.1 Conversion of English Sentences to Boolean Equations

1. The alarm will ring (Z) iff the alarm switch is turned on (A) and the door is not closed(B^{\prime}), or it is after 6PM(C) and window is not closed(D^{\prime})
2. Boolean Equation

$$
Z=A B^{\prime}+C D^{\prime}
$$

3. Circuit realization

4.2 Combinational Logic Design Using a Truth Table

4.2 Combinational Logic Design Using a Truth Table

Original equation $\rightarrow \quad f=A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C$

Simplified equation $\rightarrow \quad f=A^{\prime} B C+A B^{\prime}+A B=A^{\prime} B C+A=A+B C$

Circuit realization \rightarrow

4.2 Combinational Logic Design Using a Truth Table

- Combinational Circuit with Truth Table

(a)

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{f}	\boldsymbol{f}^{\prime}
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

When expression for $f=0 \rightarrow$
(b)

$$
\begin{gathered}
f=(A+B+C)\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right) \\
f=(A+B)\left(A+B^{\prime}+C\right)=A+B\left(B^{\prime}+C\right)=A+B C
\end{gathered}
$$

When expression for $f^{\prime}=1 \rightarrow \mid f^{\prime}=\boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime}+\boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{C}+\boldsymbol{A}^{\prime} \boldsymbol{B} \boldsymbol{C}^{\prime}$
and take the complement of $f^{\prime} \longrightarrow f=(A+B+C)\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right)$

4.3 Minterm and Maxterm Expansions

- literal is a variable or its complement (e.g. A, A^{\prime})
- Minterm, Maxterm for three variables

Row No.	A	B	C	Minterms	Maxterms
0	0	0	0	$A^{\prime} B^{\prime} C^{\prime}=m_{0}$	$A+B+C=M_{0}$
1	0	0	1	$A^{\prime} B^{\prime} C=m_{1}$	$A+B+C^{\prime}=M_{1}$
2	0	1	0	$A^{\prime} B C^{\prime}=m_{2}$	$A+B^{\prime}+C=M_{2}$
3	0	1	1	$A^{\prime} B C=m_{3}$	$A+B^{\prime}+C^{\prime}=M_{3}$
4	1	0	0	$A B^{\prime} C^{\prime}=m_{4}$	$A^{\prime}+B+C=M_{4}$
5	1	0	1	$A B^{\prime} C=m_{5}$	$A^{\prime}+B+C^{\prime}=M_{5}$
6	1	1	0	$A B C^{\prime}=m_{6}$	$A^{\prime}+B^{\prime}+C=M_{6}$
7	1	1	1	$A B C=m_{7}$	$A^{\prime}+B^{\prime}+C^{\prime}=M_{7}$

4.3 Minterm and Maxterm Expansions

- Minterm of n variables is a product of n literals in which each variable appears exactly once in either true (A) or complemented form $\left(A^{\prime}\right)$, but not both. $\left(\rightarrow m_{0}\right)$

-Minterm expansion,
-Standard Sum of Product \rightarrow

$$
\begin{aligned}
& f=A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C \\
& f(A, B, C)=m_{3}+m_{4}+m_{5}+m_{6}+m_{7} \\
& f(A, B, C)=\sum m(3,4,5,6,7)
\end{aligned}
$$

4.3 Minterm and Maxterm Expansions

- Maxterm of n variables is a sum of n literals in which each variable appears exactly once in either true (A) or complemented form $\left(A^{\prime}\right)$, but not both. $\left(\rightarrow M_{0}\right)$
-Maxterm expansion, -Standard Product of Sum \rightarrow

$$
\begin{aligned}
& f=(A+B+C)\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right) \\
& f(A, B, C)=M_{0} M_{1} M_{2} \\
& f(A, B, C)=\prod M(0,1,2)
\end{aligned}
$$

4.3 Minterm and Maxterm Expansions

$$
\begin{gathered}
\square f(A, B, C)=m_{3}+m_{4}+m_{5}+m_{6}+m_{7} \\
\longrightarrow f^{\prime}=m_{0}+m_{1}+m_{2}=\sum m(0,1,2) \\
f(A, B, C)=M_{0} M_{1} M_{2} \longrightarrow f^{\prime}=\prod M(3,4,5,6,7)=M_{3} M_{4} M_{5} M_{6} M_{7}
\end{gathered}
$$

- Minterm and Maxterm expansions are complement each other

$$
\begin{aligned}
& f^{\prime}=\left(m_{3}+m_{4}+m_{5}+m_{6}+m_{7}\right)^{\prime}=m_{3}^{\prime} m_{4}^{\prime} m_{5}^{\prime} m_{6}^{\prime} m_{7}^{\prime}=M_{3} M_{4} M_{5} M_{6} M_{7} \\
& f^{\prime}=\left(M_{0} M_{1} M_{2}\right)^{\prime}=M_{0}^{\prime}+M_{1}^{\prime}+M_{2}^{\prime}=m_{0}+m_{1}+m_{2}
\end{aligned}
$$

4.3 Minterm and Maxterm Expansions

-Example: Minterm expansion

$$
\begin{align*}
f= & a^{\prime} b^{\prime}+a^{\prime} d+a c d^{\prime} \\
= & a^{\prime} b^{\prime}\left(c+c^{\prime}\right)\left(d+d^{\prime}\right)+a^{\prime} d\left(b+b^{\prime}\right)\left(c+c^{\prime}\right)+a c d^{\prime}\left(b+b^{\prime}\right) \\
= & a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c d+a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d \\
& \quad+a^{\prime} b c^{\prime} d+a^{\prime} b c d+a b c d^{\prime}+a b^{\prime} c d^{\prime} \tag{4-9}
\end{align*}
$$

$$
\begin{array}{rl}
f= & a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c d+a^{\prime} b c^{\prime} d+a^{\prime} b c d+a b c d^{\prime}+a b^{\prime} c d^{\prime} \\
& 0000 \\
00001 & 0010 \tag{4-10}\\
f= & 0011 \\
& \text { m(0,1,2,3,5,7,10,14) }
\end{array}
$$

4.3 Minterm and Maxterm Expansions

-Example: Maxterm expansion

$$
\begin{align*}
& f=a^{\prime}\left(b^{\prime}+d\right)+a c d^{\prime} \\
& =\left(a^{\prime}+c d^{\prime}\right)\left(a+b^{\prime}+d\right)=\left(a^{\prime}+c\right)\left(a^{\prime}+d^{\prime}\right)\left(a+b^{\prime}+d\right) \\
& =\left(a^{\prime}+b b^{\prime}+c+d d^{\prime}\right)\left(a^{\prime}+b b^{\prime}+c c^{\prime}+d^{\prime}\right)\left(a+b^{\prime}+c c^{\prime}+d\right) \\
& =\left(a^{\prime}+b b^{\prime}+c+d\right)\left(a^{\prime}+b b^{\prime}+c+d^{\prime}\right)\left(a^{\prime}+b b^{\prime}+c+d^{\prime}\right) \\
& \left(a^{\prime}+b b^{\prime}+c^{\prime}+d^{\prime}\right)\left(a+b^{\prime}+c c^{\prime}+d\right) \\
& =\left(a^{\prime}+b+c+d\right)\left(a^{\prime}+b^{\prime}+c+d\right)\left(a^{\prime}+b+c+d^{\prime}\right)\left(a^{\prime}+b^{\prime}+c+d^{\prime}\right) \\
& 10001100100101101 \\
& \begin{array}{ccc}
\left(a^{\prime}+b+c^{\prime}+d^{\prime}\right)\left(a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}\right)\left(a+b^{\prime}+c+d\right)\left(a+b^{\prime}+c^{\prime}+d\right) \\
1011 & 1111 & 0100
\end{array} \\
& =\Pi M(4,6,8,9,11,12,13,15) \tag{4-11}
\end{align*}
$$

4.4 General Minterm and Maxterm Expansions

A	B	C	F
0	0	0	a_{0}
0	0	1	a_{1}
0	1	0	a_{2}
0	1	1	a_{3}
1	0	0	a_{4}
1	0	1	a_{5}
1	1	0	a_{6}
1	1	1	a_{7}

-General truth table for 3 variables ${ }^{-} a_{i}$ is either ' 0 ' or ' 1 '

- Minterm expansion for general function

$$
F=a_{0} m_{0}+a_{1} m_{1}+a_{2} m_{2}+\ldots+a_{7} m_{7}=\sum_{i=0}^{7} a_{i} m_{i}
$$

$a_{i}=1$, minterm m_{i} is present
$a_{i}=0$, minterm m_{i} is not present

- Maxterm expansion for general function

$$
F=\left(a_{0}+M_{0}\right)\left(a_{1}+M_{1}\right)\left(a_{2}+M_{2}\right) \ldots\left(a_{7}+M_{7}\right)=\prod_{i=0}^{7}\left(a_{i}+M_{i}\right)
$$

$\mathrm{a}_{i}=1, \mathrm{a}_{i}+M_{i}=1$, Maxterm M_{i} is not present
$a_{i}=0$, Maxterm is present

4.4 General Minterm and Maxterm Expansions

$$
F^{\prime}=\left[\prod_{i=0}^{7}\left(a_{i}+M_{i}\right)\right]^{\prime}=\sum_{i=0}^{7} a_{i}^{\prime} M_{i}^{\prime}=\sum_{i=0}^{7} a_{i}^{\prime} m_{i}
$$

\rightarrow All minterm which are not present in F are present in F '

$$
F^{\prime}=\left[\sum_{i=0}^{7} a_{i} m_{i}\right]^{\prime}=\prod_{i=0}^{7}\left(a_{i}^{\prime}+m_{i}^{\prime}\right)=\prod_{i=0}^{7}\left(a_{i}^{\prime}+M_{i}\right)
$$

\rightarrow All maxterm which are not present in F are present in F '

$$
\begin{aligned}
& F=\sum_{i=0}^{2^{n}-1} a_{i} m_{i}=\prod_{i=0}^{2^{n}-1}\left(a_{i}+M_{i}\right) \\
& F^{\prime}=\sum_{i=0}^{2^{n}-1} a_{i}^{\prime} m_{i}=\prod_{i=0}^{2^{n}-1}\left(a_{i}^{\prime}+M_{i}\right)
\end{aligned}
$$

4.4 General Minterm and Maxterm Expansions

If i and j are different, $m_{i} m_{j}=0$

$$
\begin{gathered}
f_{1}=\sum_{i=0}^{2^{n}-1} a_{i} m_{i} \quad f_{2}=\sum_{j=0}^{2^{n}-1} b_{j} m_{j} \\
f_{1} f_{2}=\left(\sum_{i=0}^{2^{n}-1} a_{i} m_{i}\right)\left(\sum_{j=0}^{2^{n}-1} b_{j} m_{j}\right)=\sum_{i=0}^{2^{n}-1} \sum_{j=0}^{2^{n}-1} a_{i} b_{j} m_{i} m_{j}=\sum_{i=0}^{2^{n}-1} a_{i} b_{i} m_{i}
\end{gathered}
$$

Example:

$$
\begin{gathered}
f_{1}=\sum m(0,2,3,5,9,11) \text { and } f_{2}=m(0,3,9,11,13,14) \\
f_{1} \boldsymbol{f}_{2}=\sum m(\mathbf{O}, 3,9,1 \mathbf{1})
\end{gathered}
$$

Conversion between minterm and maxterm expansions of F and F^{\prime}

	DESIRED FORM					
Conversion of forms	Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F^{\prime}		Maxterm Expansion of F^{\prime}	
$\sum_{\substack{\text { con }}}^{\substack{\text { Minterm } \\ \text { Expansion } \\ \text { of } F}}$	maxt are t not 0 mint for F	maxterm nos. are those nos. not on the minterm list for F	list minterms not present in F		maxterm no are the same as minterm nos. of F	$\begin{aligned} & \text { n nos. } \\ & \text { same } \\ & \text { erm } \end{aligned}$
	minterm nos. are those nos. not on the maxterm list for F	-	minterm nos. are the same as maxterm nos. of F		list maxterms not present in F	
	DESIRED FORM					
Application of Table4.3	Minterm Expansion of f	Maxterm Expansion of f		Minterm Expansion of f^{\prime}		Maxterm Expansion of f^{\prime}
$\begin{aligned} & \sum_{\substack{c}}+ \\ & \text { O } \sum m(3,4,5,6,7) \end{aligned}$						
		$\Pi \quad M($	1, 2)	Σm	(1, 2)	$\Pi M(3,4,5,6,7)$
$\begin{aligned} & \text { 又 } f= \\ & \text { ज } \Pi M(0,1,2) \end{aligned}$	$\Sigma m(3,4,5,6,7)$			Σm	(0, 1, 2)	$П M(3,4,5,6,7)$

4.5 Incompletely Specified Functions

If N_{1} output does not generate all possible combination of A, B, C, the output of $\mathrm{N}_{2}(\mathrm{~F})$ has 'don't care' values.

\section*{Truth Table with Don't Cares
 | A | B | C | F | |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | |
| 0 | 0 | 1 | | X |
| 0 | 1 | 0 | | 0 |
| 0 | 1 | 1 | 1 | |
| 1 | 0 | 0 | | 0 |
| 1 | 0 | 1 | 0 | |
| 1 | 1 | 0 | X | |
| 1 | 1 | 1 | 1 | |}

4.5 Incompletely Specified Functions

Finding Function:

Case 1: assign '0' on X's

$$
F=A^{\prime} B^{\prime} C^{\prime \prime}+A^{\prime} B C+A B C=A^{\prime} B^{\prime} C^{\prime}+B C
$$

Case 2: assign ' 1 ' to the first X and ' 0 ' to the second ' X '

$$
F=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C+A B C=A^{\prime} B^{\prime}+B C
$$

Case 3: assign ' 1 ' on X 's

$$
F=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+\underline{A^{\prime} B C}+A B C^{\prime}+\underline{A B C}=A^{\prime} B^{\prime}+\underline{B C}+A B
$$

\rightarrow The case 2 leads to the simplest function

4.5 Incompletely Specified Functions

Minterm expansion for incompletely specified function

$$
F=\sum m(0,3,7)+\sum d(1,6)
$$

Maxterm expansion for incompletely specified function

$$
F=\prod M(2,4,5) \cdot \prod D(1,6)
$$

4.6 Examples of Truth Table Construction

Example 1 : Binary Adder

a b Sum 0 0 00 $0+0=0$ 0 1 01 $0+1=1$ 1 0 01 $1+0=1$ 1 1 10 $1+1=2$$\longrightarrow$$A$ B X Y 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{B}, \boldsymbol{Y}=\boldsymbol{A}^{\prime} \boldsymbol{B}+\boldsymbol{A} \boldsymbol{B}^{\prime}=\boldsymbol{A} \oplus \boldsymbol{B}$

4.6 Examples of Truth Table Construction

Example 2 : 2 bit binary Adder

TRUTH TABLE:
TRUTH TABLE:

$\overbrace{A B}^{N_{1}}$	$\overbrace{C D}^{N_{2}}$	$\overbrace{X Y Z}^{N_{3}}$	$\overbrace{A B}^{N_{1}}$	$\overbrace{C D}^{N_{2}}$	$\overbrace{X Y Z}^{N_{3}}$
00	00	000	10	00	010
00	01	001	10	01	011
00	10	010	10	10	100
00	11	011	10	11	101
01	00	001	11	00	011
01	01	010	11	01	100
01	10	011	11	10	101
01	11	100	11	11	110

4.7 Design of Binary Adders and Subtracters

Parallel Adder for 4 bit Binary Numbers

$$
\begin{array}{r}
10110 \text { (carries) } \\
1011 \\
+1011 \\
\hline 10110
\end{array}
$$

Parallel adder composed of four full adders \leftarrow Carry Ripple Adder (slow!)

Truth Table for a Full Adder

X	Y	$C_{\text {in }}$	$C_{\text {out }}$	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

4.7 Design of Binary Adders and Subtracters

$$
\begin{aligned}
\text { Sum } & =X^{\prime} Y^{\prime} C_{i n}+X^{\prime} Y C^{\prime}{ }_{i n}+X Y^{\prime} C^{\prime}{ }_{i n}+X Y C_{i n} \\
& =X^{\prime}\left(Y^{\prime} C_{i n}+Y C_{i n}^{\prime}\right)+X\left(Y^{\prime} C_{i n}^{\prime}+Y C_{i n}\right) \\
& =X^{\prime}\left(Y \oplus C_{i n}\right)+X\left(Y \oplus C_{i n}\right)^{\prime}=X \oplus Y \oplus C_{i n} \\
& =\left(X^{\prime} Y C_{i n}+X Y C_{i n}\right)+\left(X Y^{\prime} C_{i n} \underline{C_{\text {out }}}+X^{\prime} Y Y C_{i n}+X Y_{i n}^{\prime} C_{i n}+X Y C^{\prime}{ }_{i n}+X Y C_{i n}\right. \\
& =Y C_{i n}+X C_{i n}+X Y
\end{aligned}
$$

4.7 Design of Binary Adders and Subtracters

When 1 's complement is used, the end-around carry is accomplished by connecting C_{4} to C_{0} input.

Overflow(V) when adding two signed binary number

$$
V=A_{3}^{\prime} B_{3}^{\prime} S_{3}+A_{3} B_{3} S_{3}^{\prime}
$$

4.7 Design of Binary Adders and Subtracters

Subtracters

Binary Subtracter using full adder
Subtraction is done by adding the 2's complemented number to be subtracted

2's compleneted number

4.7 Design of Binary Adders and Subtracters

Subtracters- using Full Subtracter

Truth Table for a Full Subtracter

x_{i}	y_{i}	b_{i}	$b_{i+1} d_{i}$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
0	1	1	
1	0	0	
1	1	0	
1	0	1	
1	1	0	0
1	1	1	

