CHAPTER 4

Applications of Boolean Algebra/ Minterm and Maxterm Expansions

This chapter in the book includes:

Objectives

Study Guide

- 4.1 Conversion of English Sentences to Boolean Equations
- 4.2 Combinational Logic Design Using a Truth Table
- 4.3 Minterm and Maxterm Expansions
- 4.4 General Minterm and Maxterm Expansions
- 4.5 Incompletely Specified Functions
- 4.6 Examples of Truth Table Construction
- 4.7 Design of Binary Adders and Subtracters Problems

Objective

Conversion of English Sentences to Boolean Equations

- •Combinational Logic Design Using a Truth Table
- •Minterm and Maxterm Expansions
- •General Minterm and Maxterm Expansions
- Incompletely Specified Functions (Don't care term)
- •Examples of Truth Table Construction

Design of Binary Adders(Full adder) and Subtracters

- Steps in designing a single-output combinational switching circuit
- 1. Find switching function which specifies the desired behavior of the circuit
- 2. Find a simplified algebraic expression for the function
- 3. Realize the simplified function using available logic elements

1. F is 'true' if A and B are both 'true' \rightarrow F=AB

3/28

1. The alarm will ring(Z) iff the alarm switch is turned on(A) **and** the door is not closed(B'), **or** it is after 6PM(C) and window is not closed(D')

2. Boolean Equation Z = AB' + CD'

4.2 Combinational Logic Design Using a Truth Table

Original equation
$$\rightarrow$$
 $f = A'BC + AB'C' + AB'C + ABC' + ABC$

Simplified equation
$$\rightarrow$$
 $f = A'BC + AB' + AB = A'BC + A = A + BC$

6/28

4.2 Combinational Logic Design Using a Truth Table

4.3 Minterm and Maxterm Expansions

- *literal* is a variable or its complement (e.g. A, A')

- Minterm, Maxterm for three variables

Row No.	ABC	Minterms	Maxterms
0	000	$A'B'C' = m_0$	$A + B + C = M_0$
1	001	$A'B'C = m_1$	$A + B + C' = M_1$
2	010	$A'BC' = m_2$	$A + B' + C = M_2$
3	011	$A'BC = m_3$	$A + B' + C' = M_3$
4	100	$AB'C' = m_4$	$A' + B + C = M_4$
5	101	$AB'C = m_5$	$A' + B + C' = M_5$
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$
7	111	$ABC = m_7$	$A' + B' + C' = M_7$

- *Minterm* of *n* variables is a product of *n* literals in which each variable appears exactly once in either true (*A*) or complemented form(*A*'), but not both. (\rightarrow m₀)

-Minterm expansion, -Standard Sum of Product \rightarrow $f(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$ $f(A, B, C) = \sum m(3,4,5,6,7)$

4.3 Minterm and Maxterm Expansions

- *Maxterm* of *n* variables is a sum of *n* literals in which each variable appears exactly once in either true (*A*) or complemented form(*A*'), but not both.(\rightarrow M₀)

-Maxterm expansion,
-Standard Product of Sum→

f = (A + B + C)(A + B + C')(A + B' + C) $f(A, B, C) = M_0 M_1 M_2$ $f(A, B, C) = \prod M(0, 1, 2)$

4.3 Minterm and Maxterm Expansions

$$f'(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$f' = m_0 + m_1 + m_2 = \sum m(0, 1, 2)$$

$$f(A, B, C) = M_0 M_1 M_2 \longrightarrow f' = \prod M(3, 4, 5, 6, 7) = M_3 M_4 M_5 M_6 M_7$$

- Minterm and Maxterm expansions are complement each other

$$f' = (m_3 + m_4 + m_5 + m_6 + m_7)' = m'_3 m'_4 m'_5 m'_6 m'_7 = M_3 M_4 M_5 M_6 M_7$$
$$f' = (M_0 M_1 M_2)' = M'_0 + M'_1 + M'_2 = m_0 + m_1 + m_2$$

-Example: *Minterm* expansion

$$f = a'b' + a'd + acd'$$

= $a'b'(c + c')(d + d') + a'd(b + b')(c + c') + acd'(b + b')$
= $a'b'c'd' + a'b'c'd + a'b'cd' + a'b'cd + a'b'cd + a'b'cd + a'b'cd + a'b'cd'$
+ $a'bc'd + a'bcd + abcd' + ab'cd'$ (4-9)

4.3 Minterm and Maxterm Expansions

-Example: Maxterm expansion

$$\begin{aligned} f &= a'(b'+d) + acd' \\ &= (a'+cd')(a+b'+d) = (a'+c)(a'+d')(a+b'+d) \\ &= (a'+bb'+c+dd')(a'+bb'+cc'+d')(a+b'+cc'+d) \\ &= (a'+bb'+c+d)(a'+bb'+c+d')(a'+bb'+c+d') \\ &\quad (a'+bb'+c'+d')(a+b'+cc'+d) \\ &= (a'+b+c+d)(a'+b'+c+d)(a'+b+c+d')(a'+b'+c+d') \\ &\quad 1000 & 1100 & 1001 & 1101 \\ &\quad (a'+b+c'+d')(a'+b'+c'+d')(a+b'+c+d)(a+b'+c'+d) \\ &\quad 1011 & 1111 & 0100 & 0110 \\ &= \Pi M(4,6,8,9,11,12,13,15) \end{aligned}$$

$$(4-11)$$

4.4 General Minterm and Maxterm Expansions

АВС	F	- Minterm expansion for general function
000	a ₀	$F = a m + a m + a m + a m = \sum_{n=1}^{7} a m$
001	a ₁	$I = a_0 m_0 + a_1 m_1 + a_2 m_2 + \dots + a_7 m_7 - \sum_{i=0}^{n} a_i m_i$
010	a2	$a_i = 1$, minterm m_i is present
011	a ₃	
100	a ₄	$a_i = 0$, minterm m_i is not present
101	a ₅	
110	a ₆	- Maxterm expansion for general function
111	a ₇	
•Gener	al truth table	$F = (a_0 + M_0)(a_1 + M_1)(a_2 + M_2)(a_7 + M_7) = \prod_{i=0}^{\prime} (a_i + M_i)$
for 3 variables		$a_i = 1, a_i + M_i = 1$, Maxterm M_i is not present
•a _i is e	itner to or the	$a_i = 0$, Maxterm is present

4.4 General Minterm and Maxterm Expansions

$$F' = \left[\prod_{i=0}^{7} (a_i + M_i)\right]' = \sum_{i=0}^{7} a'_i M'_i = \sum_{i=0}^{7} a'_i m_i$$

 \rightarrow All minterm which are not present in *F* are present in *F* '

$$F' = \left[\sum_{i=0}^{7} a_i m_i\right]' = \prod_{i=0}^{7} (a'_i + m'_i) = \prod_{i=0}^{7} (a'_i + M_i)$$

 \rightarrow All maxterm which are not present in *F* are present in *F* '

$$F = \sum_{i=0}^{2^{n}-1} a_{i}m_{i} = \prod_{i=0}^{2^{n}-1} (a_{i} + M_{i})$$
$$F' = \sum_{i=0}^{2^{n}-1} a'_{i}m_{i} = \prod_{i=0}^{2^{n}-1} (a'_{i} + M_{i})$$

4.4 General Minterm and Maxterm Expansions

If *i* and *j* are different, $m_i m_j = 0$

$$f_1 = \sum_{i=0}^{2^n - 1} a_i m_i$$
 $f_2 = \sum_{j=0}^{2^n - 1} b_j m_j$

$$f_1 f_2 = \left(\sum_{i=0}^{2^n - 1} a_i m_i\right) \left(\sum_{j=0}^{2^n - 1} b_j m_j\right) = \sum_{i=0}^{2^n - 1} \sum_{j=0}^{2^n - 1} a_i b_j m_i m_j = \sum_{i=0}^{2^n - 1} a_i b_i m_i$$

$$f_1 = \sum m(0,2,3,5,9,11)$$
 and $f_2 = m(0,3,9,11,13,14)$

$$f_1 f_2 = \sum m(0,3,9,11)$$

Conversion between minterm and maxterm expansions of *F* and *F*'

		DESIRED FORM			
Conversion of forms		Minterm Expansion of <i>F</i>	Maxterm Expansion of <i>F</i>	Minterm Expansion of <i>F'</i>	Maxterm Expansion of <i>F'</i>
I FORM	Minterm Expansion of <i>F</i>		maxterm nos. are those nos. not on the minterm list for <i>F</i>	list minterms not present in <i>F</i>	maxterm nos. are the same as minterm nos. of <i>F</i>
GIVE	Maxterm Expansion of <i>F</i>	minterm nos. are those nos. not on the maxterm list for <i>F</i>		minterm nos. are the same as maxterm nos. of <i>F</i>	list maxterms not present in <i>F</i>

DESIRED FORM

Application of Table4.3	Minterm Expansion	Maxterm Expansion	Minterm Expansion	Maxterm Expansion
5	of f	of f	of <i>f</i> ′	of f'
$f = \sum_{i=1}^{N} m(3, 4, 5, 6, 7)$		П <i>М</i> (0, 1, 2)	Σ <i>m</i> (0, 1, 2)	П <i>М</i> (3, 4, 5, 6, 7)
f = П M(0, 1, 2)	Σ <i>m</i> (3, 4, 5, 6, 7)		Σ m(0, 1, 2)	П <i>М</i> (3, 4, 5, 6, 7)

Fundamentals of Logic Design Chap. 4

17/28

4.5 Incompletely Specified Functions

If N_1 output does not generate all possible combination of A,B,C, the output of N₂(F) has 'don't care' values. Truth Table with Don't Cares

ABC	F
000	1
001	Х
010	0
011	1
100	0
101	0
110	Х
111	1

4.5 Incompletely Specified Functions

Finding Function:

Case 1: assign '0' on X's

F = A'B'C' + A'BC + ABC = A'B'C' + BC

Case 2: assign '1' to the first X and '0' to the second 'X'

F = A'B'C' + A'B'C + A'BC + ABC = A'B' + BC

Case 3: assign '1' on X's

 $F = A'B'C' + A'B'C + \underline{A'BC} + ABC' + \underline{ABC} = A'B' + \underline{BC} + AB$

 \rightarrow The case 2 leads to the simplest function

4.5 Incompletely Specified Functions

Minterm expansion for incompletely specified function

4.6 Examples of Truth Table Construction

Example 1 : Binary Adder

а	b	Sum		A		В
0	0	0 0	0+0=0	C)	0
0	1	0 1	0+1=1)	1
1	0	0 1	1+0=1	1		
1	1	10	1+1=2			U
		•	•	1		1

$X = AB, Y = A'B + AB' = A \oplus B$

Fundamentals of Logic Design Chap. 4

Т

Х

0

0

0

1

Y

0

1

1

0

4.6 Examples of Truth Table Construction

Example 2 : 2 bit binary Adder

TRUTH TABLE:

TRUTH TABLE:

<i>N</i> ₁	N ₂	N ₃	<i>N</i> ₁	N ₂	N ₃
AB	CD	XYZ	AB	CD	XYZ
0 0	0 0	000	10	0 0	010
0 0	0 1	001	10	0 1	011
0 0	10	010	10	10	100
0 0	1 1	011	10	11	101
01	0 0	001	1 1	0 0	011
01	0 1	010	1 1	0 1	100
01	10	011	1 1	1 0	101
01	1 1	100	1 1	1 1	1 1 0

22/28

X	Υ	Cin	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

When 1's complement is used, the end-around carry is accomplished by connecting C_4 to C_0 input.

Overflow(V) when adding two signed binary number

$$V = A'_{3} B'_{3} S_{3} + A_{3} B_{3} S'_{3}$$

Subtracters

Binary Subtracter using full adder

- Subtraction is done by adding the 2's complemented number to be subtracted

28/28