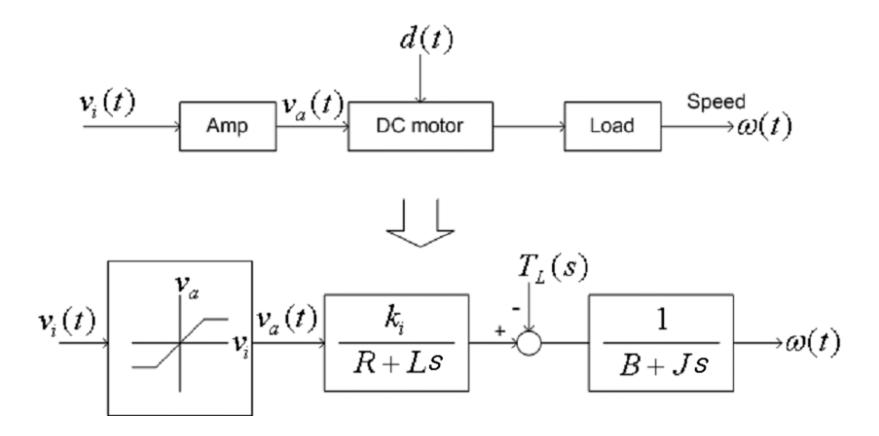


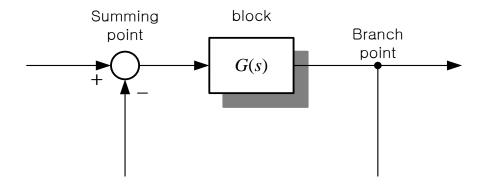
Automatic Control Systems-Lecture Note 8-

Block Diagram and Signal-Flow Graph 2

[Example] DC motor control system



- Components
 - block : represents input-output system of transfer function
 - **summing point**: signals are added. + for addition and for subtraction are used
 - branch point : departure point of signals



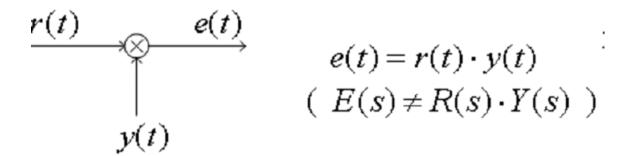
<Fig> Components of block diagram

- Components of block diagram
 - 1) System Block

$$\frac{x(t)}{X(s)}$$
 $G(s)$ $y(t)$ $Y(s) = G(s) \cdot X(s)$

2) Adder(or Subtracter)

3) Multiplier

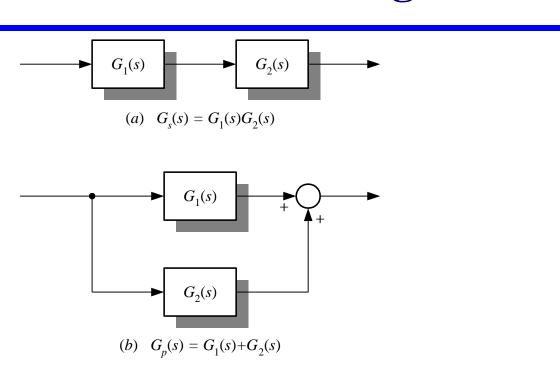


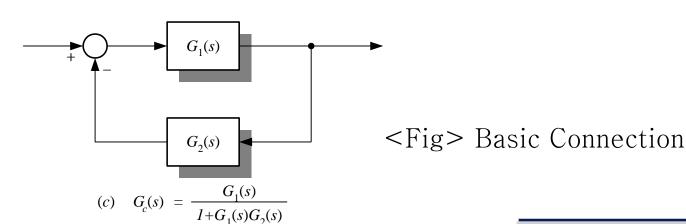
Basic connection

- serial:
$$G_s(s) = G_1(s)G_2(s)$$

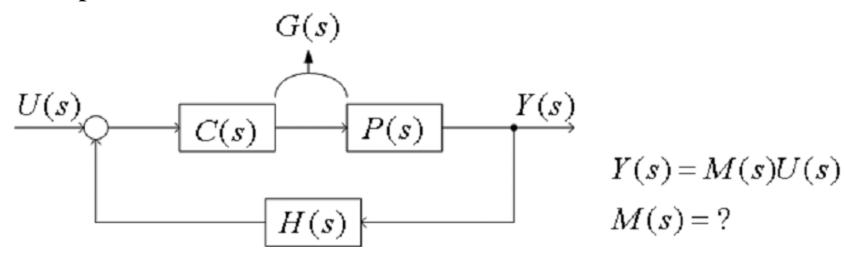
- parallel:
$$G_p(s) = G_1(s) + G_2(s)$$

- feedback:
$$G_c(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)}$$





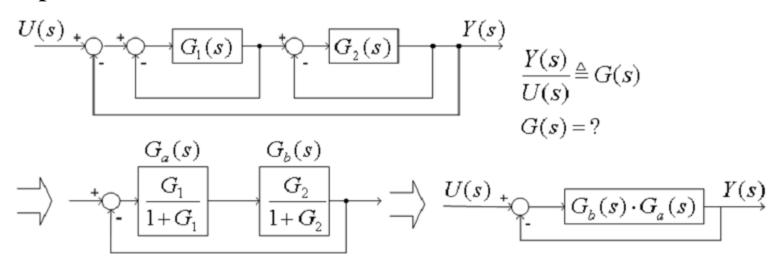
[Example]



$$Y(s) = M(s)U(s) = \frac{C(s)P(s)}{1 + H(s)C(s)P(s)}U(s)$$

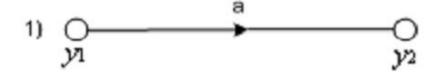
$$\therefore M(s) = \frac{C(s)P(s)}{1 + H(s)C(s)P(s)}$$

[Example]

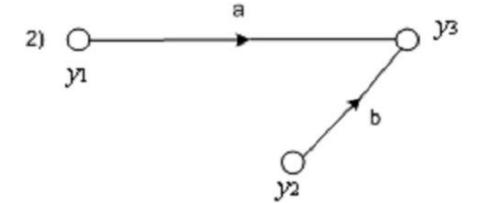


$$\therefore G(s) = \frac{G_a G_b}{1 + G_a G_b} = \frac{\frac{G_1 G_2}{1 + G_1 1 + G_2}}{1 + \frac{G_1 G_2}{1 + G_1 1 + G_2}} = \frac{G_1 G_2}{(1 + G_1)(1 + G_2) + G_1 G_2}$$

- ☐ Signal Flow Graph
- Alternative approach to block diagram
 - o Basic elements
 - · variable \rightarrow beneath node
 - \cdot gain \rightarrow above the directional branch



$$y_2 = ay_1$$



$$y_3 - ay_1 + by_2$$

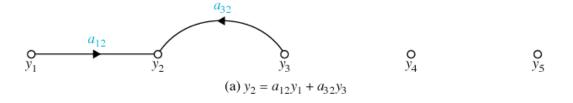
[Example]

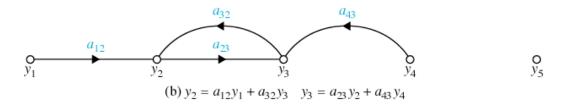
$$y_2 = a_{12}y_1 + a_{32}y_3$$

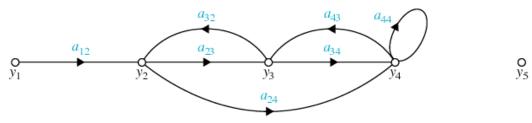
$$y_3 = a_{23}y_2 + a_{43}y_4$$

$$y_4 = a_{24}y_2 + a_{34}y_3 + a_{44}y_4$$

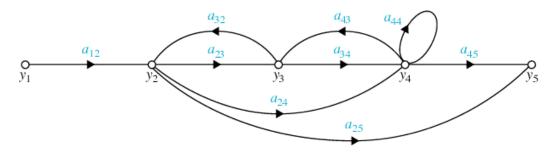
$$y_5 = a_{25}y_2 + a_{45}y_4$$



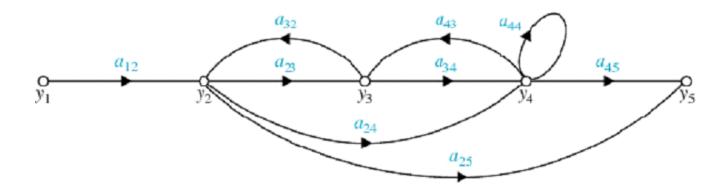




(c)
$$y_2 = a_{12}y_1 + a_{32}y_3$$
 $y_3 = a_{23}y_2 + a_{43}y_4$ $y_4 = a_{24}y_2 + a_{34}y_3 + a_{44}y_4$



Definitions of SFG terms



- Input node; node that has only outgoing branches ex) y_1
- Output node; node that has only incoming branches ex) y_5
- → Can be assigned arbitrarily by using a unit gain branch

- Path: collection of continuous branches.
- Path Gain: product of branch gains in the path.
- Forward Path: path that starts at one input node and ends at one output node.

No node is traversed more than once.

• Forward Path Gain: path gain of the forward path.

ex) F. path 1:
$$y_1 \to y_2 \to y_3 \to y_4 \to y_5 \Rightarrow M_1 = a_{12}a_{23}a_{34}a_{45}$$

path 2: $y_1 \to y_2 \to y_5 \Rightarrow M_2 = a_{12}a_{25}$
path 3: $y_1 \to y_2 \to y_4 \Rightarrow M_3 = a_{12}a_{24}a_{45}$

- Loop: a closed path. No node is traversed more than once.
- Loop Gain: product of branch gains in the loop.

ex)
$$loop 1: a_{23} - a_{32}$$
 $loop gain = a_{23}a_{32}$ $loop 2: a_{34} - a_{43}$ $loop gain = a_{34}a_{43}$ $loop 3: a_{44}$ $loop 4: a_{24} - a_{43} - a_{32}$ $loop gain = a_{24}a_{43}a_{32}$

• Nontouching Loops: loops that have no common nodes.

ex)

 $loop \ a_{23} - a_{32} \ \text{and} \ loop \ a_{44}$

Gain Formula for SFG (=Mason's Theorem)

$$M = \frac{y_{out}}{y_{in}} = \sum_{k=1}^{N} \frac{M_k \Delta_k}{\Delta}$$

N =# of forwards (between y_{in} and y_{out})

 $\Delta = 1 - (\sum \text{ single loop } \text{ gain})$

 $+(\sum$ two nontouching loop gain)

- (\sum three nontouching loop gain) + ...

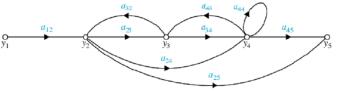
 $M_k = k$ - th forward path gain

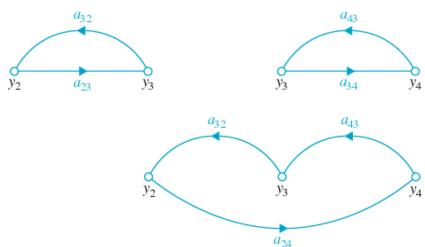
 $\Delta_k = \Delta$ with k-th forward path removed

[Example] Find the gain $\frac{y_5}{y_1}$ in the previous graph.

1) Loop gains & Δ

Single loop:





$$L_{11} = a_{23}a_{32}$$
, $L_{21} = a_{34}a_{43}$, $L_{31} = a_{24}a_{43}a_{32}$, $L_{41} = a_{44}$

(the 2nd subscript 1 means single loop)

Two nontouching loop; $a_{23}a_{32}$ and $a_{44} \rightarrow L_{22} = a_{23}a_{32}a_{44}$

$$\Delta = 1 - (L_{11} + L_{21} + L_{31} + L_{41}) + (L_{22}) = \cdots$$

2) Forward path gain

1:
$$M_1 = a_{12}a_{23}a_{34}a_{45}$$

$$2: M_2 = a_{12}a_{25}$$

3:
$$M_3 = a_{12}a_{24}a_{45}$$

3) Δ_1 : forward path 1 (X) \rightarrow no loop $\rightarrow \Delta_1 = 1$

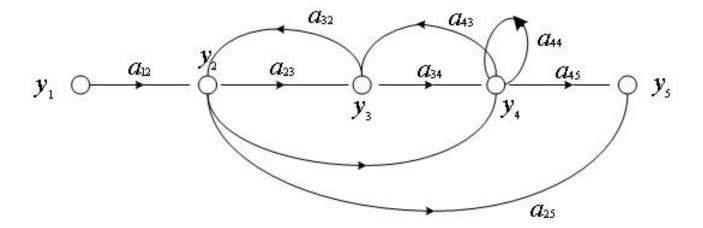
 Δ_2 : forward path 2 (X) \rightarrow two single loops $a_{34}a_{43}, a_{44}$

$$\Delta_2 = 1 - (a_{34}a_{43} + a_{44})$$

$$\Delta_3$$
: forward path 3 (X) \rightarrow no loops $\Delta_3 = 1$

$$\therefore \frac{y_5}{y_1} = \frac{\sum M_k \Delta_k}{\Delta} = \cdots$$

[Example] Find the gain $\frac{y_2}{y_1}$: in the previous example.



- 1) Loop gains & Δ ; the same
- 2) forward path 1 : $a_{12} \to M = a_{12}$
- 3) Δ_1 : forward path 1 removed \rightarrow two single loops

$$a_{34}a_{43}$$
 and a_{44}

$$\Delta_1 = 1 - (a_{34}a_{43} + a_{44})$$

$$\therefore \frac{y_2}{y_1} = \frac{M_1 \Delta_1}{\Delta} = \frac{a_{12} (1 - a_{34} a_{43} - a_{44})}{\Delta}$$