Symmetry is every where, in nature and in engineering achievements.
 e.g.) flowers, plants, snowflakes, insects,,,

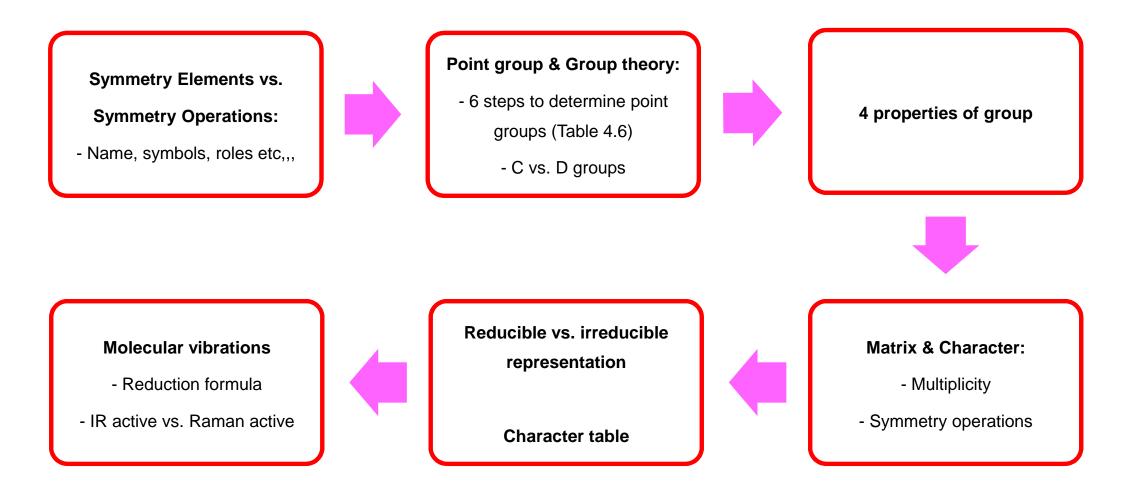
pyramid, Eiffel tower,,,

- symmetry concept in chemistry: symmetry of molecule
  - predict infrared spectra
  - predict orbital activity
  - describe the type of orbitals in bonding
  - interpret electronic spectra
  - other molecular properties
- in Chapter 4: 1) five symmetry operations
  - 2) molecular classification based on the symmetry
  - 3) how to use to predict optical activity
  - 4) to determine IR- & Raman-active molecular vibrations











• <u>symmetry element</u>: geometrical entity (a line, a plane, or a point) with respect to which

one or more symmetry operations can be carried out

- **symmetry operation:** a **movement** applied to a molecule
  - $\rightarrow$  **no overall change** in the overall positions of the atoms (except for the

labels we put on atoms)

- A molecule must have **exactly the same** appearance after the operation as before, if there is a symmetry elements!!
  - ← indistinguishable before & after the operation



© 2014 Pearson Education, Inc.

| Table of Symmetry Elements and Symmetry Operations |                |                                                                                                                                                                            |  |
|----------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Elements                                           | Symbols        | Operations                                                                                                                                                                 |  |
| 1. Identity                                        | Ε              | Identity operation                                                                                                                                                         |  |
| 2. Proper Axis                                     | C <sub>n</sub> | Rotation operation by 360°/ <i>n</i>                                                                                                                                       |  |
| 3. Reflection Plane                                | σ              | Reflection operation (in the plane)                                                                                                                                        |  |
| 4. Inversion Center                                | i              | Inversion (of the point x, y, x to -x, -y, -z)                                                                                                                             |  |
| 5. Improper Axis                                   | S <sub>n</sub> | <ul> <li>Improper rotation (= rotation-reflection operation)</li> <li>1. Rotation by 360 °/n</li> <li>2. Reflection in plane perpendicular<br/>to rotation axis</li> </ul> |  |

#### Table of Symmetry Floments and Symmetry Operations



- E: identity (identity operation)
  - no change in the molecule
  - needed for mathematical completeness
  - every molecule has this operation!!
- *C<sub>n</sub>*: proper axis (rotation operation)
  - rotation through 360°/*n* about a rotation axis (counterclockwise: +)
  - CHCl<sub>3</sub>: threefold  $(C_3)$  axis
    - rotation axis  $\rightarrow$  parallel to C-H axis
    - $C_3$ : rotation angle: 360°/3 = 120°
    - $C_3^2$ : two consecutive rotation  $\rightarrow$  360° x (2/3) = 240°
    - $C_3^3 \equiv E$  (\**E* is included in all molecules!!)

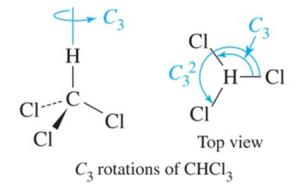
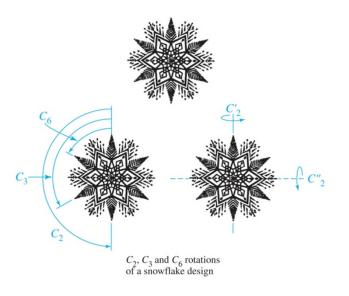


Fig.4.2

- *C<sub>n</sub>*: proper axis (rotation operation)
  - multiple rotation axes
    - e.g.) snowflake (Fig.4.2): hexagonal, planar
      - 1)  $C_6$ : along the axis through the center of molecule

| <b>Rotation Angle</b> | Symmetry Operation          |
|-----------------------|-----------------------------|
| 60°                   | C <sub>6</sub>              |
| 120°                  | $C_3 \ (\equiv \ C_6^2)$    |
| 180°                  | $C_2 \ (\equiv \ C_6^{3})$  |
| 240°                  | $C_3^2 (\equiv C_6^4)$      |
| 300°                  | C <sub>6</sub> <sup>5</sup> |
| 360°                  | $E \ (\equiv \ C_6^{\ 6})$  |





2) two sets of three  $C_2$ :  $C_2'(x3)$ ,  $C_2''(x3)$ 

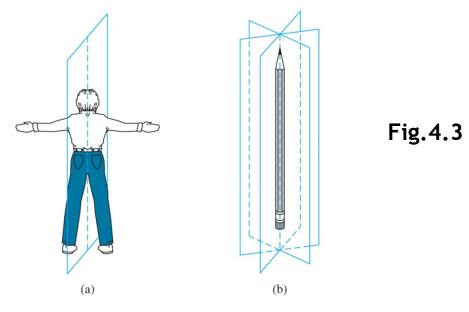
3) principal axis (= highest order of rotation axis):  $C_n$  axis w/ the largest n value

 $\leftarrow$  for snowflake  $\rightarrow C_6$ 

 $\triangleleft$  principal axis  $\rightarrow$  z axis in Cartesian coordinate



- $\sigma$  : reflection plane (reflection operation in the mirror plane)
  - move a point to a opposite and equidistance point through a plane



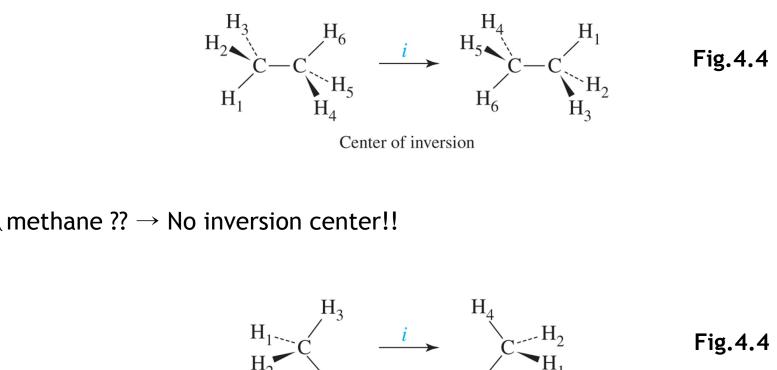
e.g.) human body: one mirror plane switching left to right

round pencil: infinite # mirror planes at the center of the object (e.g. acetylene, CO<sub>2</sub>)

- ( if perpendicular to the principal axis,  $\rightarrow \sigma_h$  (horizontal)
  - if contain the principal axis,  $\rightarrow \sigma_v$  (vertical),  $\sigma_d$  (dihedral)



- *i* : inversion center (inversion of the point)
  - move a point to a opposite and equidistance position through a common central point
  - e.g.) ( ethane (staggered conformation) (Fig.4.4)





T.-S.You

No center of inversion



• *i* : inversion center (inversion of the point)

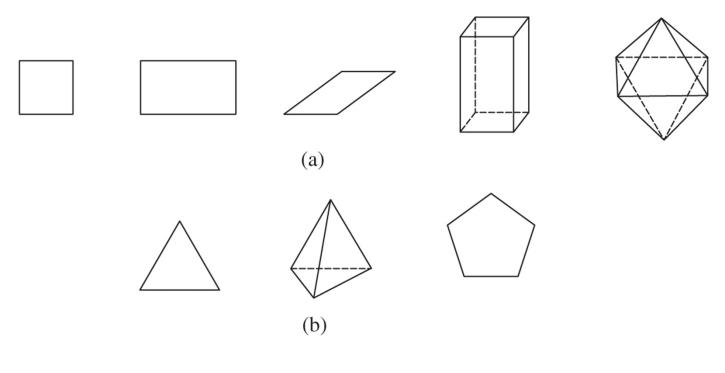
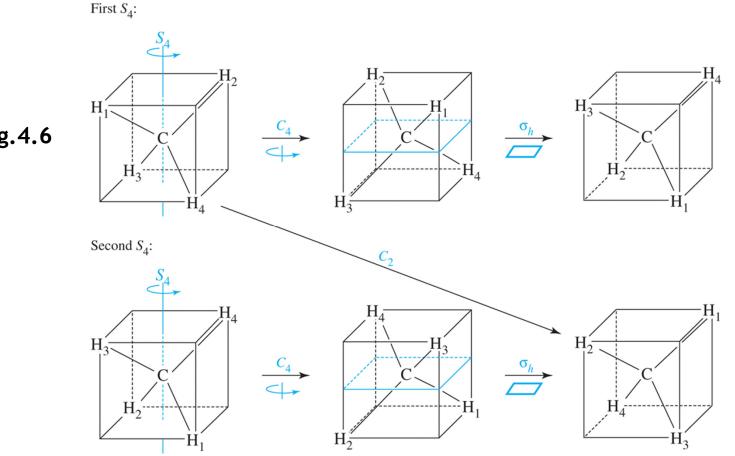


Fig.4.5



- $S_n$ : improper axis (improper rotation, rotation-reflection operation)
  - rotation by  $360^{\circ}/n$  + reflection through a perpendicular plane
  - e.g.) methane  $\rightarrow$  S<sub>4</sub> (x3) (through C & bisecting the angle b/w two H)



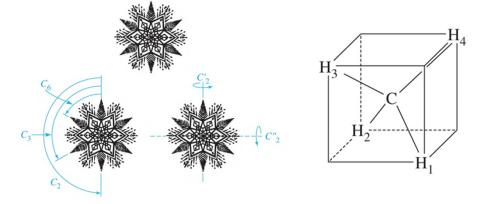


# 4.1 Symmetry Elements and Operations



- S<sub>n</sub>: improper axis (improper rotation, rotation-reflection operation)
  - $S_n$  axis coincident w/ a  $C_n$  axis: (e.g.) snowflake:  $S_2(=i)$ ,  $S_3$ ;  $S_6$  coincides w/  $C_6$
  - $S_{2n}$  axis coincident w/ a  $C_n$  axis: (e.g.) methane:  $S_4$  coincides w/  $C_2$

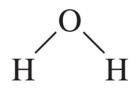
$$\left|\begin{array}{c}\mathsf{S}_2 = i\\\mathsf{S}_1 = \sigma\end{array}\right\} \rightarrow i, \ \sigma \ \text{notations are preferred.}$$



• see Table 4.1 Symmetry Table of Symmetry Elements and Operations



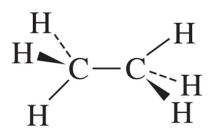
- Examples 4.1: Find all symmetry elements!!
  - 1)  $H_2O: E, C_2$  axis, planes of symmetry (x 2)



2) p-Dichlorobenzene: E,  $C_2$  axis (x 3), mirror plane (x 3), i



3) ethane (staggered conformation): E,  $C_3$  axis,  $C_2$  axis (x 3),  $\sigma$  (x 3), i,  $S_6$  axis





- Point Group: the set of symmetry operations (describing the molecule's symmetry)
- Group Theory: the mathematical treatment of the properties of groups

 $\leftarrow$  used for molecular orbitals, vibrations, other properties,,,

- How to ??: follow six steps shown in Figure 4.7 until final classification of the molecule
  - 1) Determine whether <u>low</u> or <u>high</u> symmetry
  - 2) Find the <u>rotation axis</u> w/ the highest *n* (the principal axis)
  - 3) Does the molecule have any  $\underline{C_2}$  axes perpendicular to the  $C_n$  axis?
  - 4) Does the molecule have a mirror plane ( $\underline{\sigma}_h$ ) perpendicular to the  $C_n$  axis?
  - 5) Does the molecule have any mirror plane ( $\underline{\sigma}_v$  or  $\underline{\sigma}_d$ ) that contain the  $C_n$  axis?
  - 6) Is there an  $\underline{S}_{2n}$  axis collinear w/ the  $C_n$  axis?

### 4.2 Point Groups



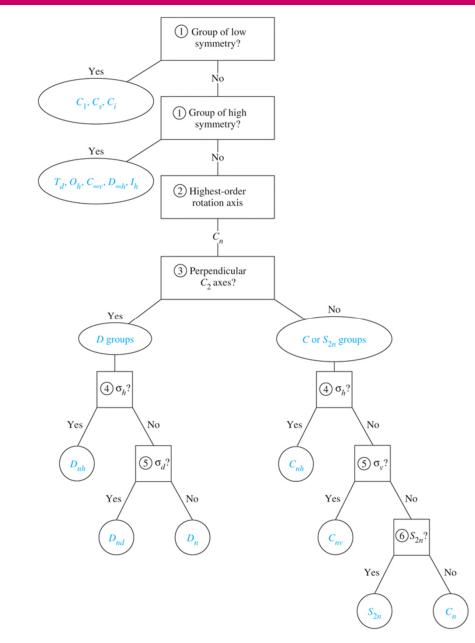


Fig.4.7 Diagram of the Point Group Assignment Method.

# 4.2.1 Groups of Low and High Symmetry



1. Determine whether the molecule belongs to one of the special cases of low or high symmetry

1) Low symmetry: few or no symmetry operations

| TABLE 4.2      | Groups of Low Symmetry                           |                                             |                      |
|----------------|--------------------------------------------------|---------------------------------------------|----------------------|
| Group          | Symmetry                                         | Examples                                    |                      |
| C <sub>1</sub> | No symmetry other than the identity operation    | CHFClBr                                     | H<br>F<br>C<br>Br    |
| C <sub>s</sub> | Only one mirror plane                            | H <sub>2</sub> C=CClBr                      | H C = C Br           |
| Ci             | Only an inversion center; few molecular examples | HClBrC — CHClBr<br>(staggered conformation) | Cl C - C Cl Br Br Br |



1. Determine whether the molecule belongs to one of the special cases of low or high symmetry

#### 2) High symmetry:

contain many symm. operations

 $\subseteq$  linear, tetrahedral, octahedral,

icosahedral

| TABLE          | 4.3 Groups of High Symmetry                                                                                                                                                                                                                                      |                                                                                                       |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Group          | Description                                                                                                                                                                                                                                                      | Examples                                                                                              |
| $C_{\infty v}$ | These molecules are linear, with an infinite number of rotations<br>and an infinite number of reflection planes containing the<br>rotation axis. They do not have a center of inversion.                                                                         | C <sub>∞</sub> H−Cl                                                                                   |
| $D_{\infty h}$ | These molecules are linear, with an infinite number of rotations<br>and an infinite number of reflection planes containing the<br>rotation axis. They also have perpendicular C <sub>2</sub> axes, a<br>perpendicular reflection plane, and an inversion center. | $C_{\infty} \downarrow 0 = C_{2}$                                                                     |
| T <sub>d</sub> | Most (but not all) molecules in this point group have the familiar tetrahedral geometry. They have four $C_3$ axes, three $C_2$ axes, three $S_4$ axes, and six $\sigma_d$ planes. They have no $C_4$ axes.                                                      | H<br>H<br>H<br>H                                                                                      |
| O <sub>h</sub> | These molecules include those of octahedral structure, although some other geometrical forms, such as the cube, share the same set of symmetry operations. Among their 48 symmetry operations are four $C_3$ rotations, three $C_4$ rotations, and an inversion. | $\begin{array}{c} F \xrightarrow{F} F \\ F \xrightarrow{F} F \\ F \xrightarrow{F} F \\ F \end{array}$ |
| I <sub>h</sub> | Icosahedral structures are best recognized by their six C <sub>5</sub> axes, as well as many other symmetry operations—120 in all.                                                                                                                               |                                                                                                       |
|                |                                                                                                                                                                                                                                                                  | $B_{12}H_{12}^{2-}$ with BH                                                                           |

B<sub>12</sub>H<sub>12</sub><sup>-</sup> WITN BH at each vertex of an icosahedron

In addition, there are four other groups, T,  $T_b$ , O, and I, which are rarely seen in nature. These groups are discussed at the end of this section.



- 2. Find the rotation axis w/ the highest n, the highest order  $C_n$  axis for the molecule. This is principal axis of the molecule.
  - If all equivalent, choose one passing through the most # atom as a principal axis

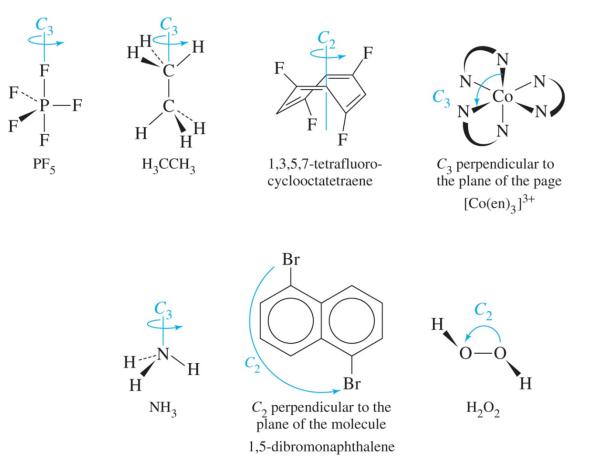
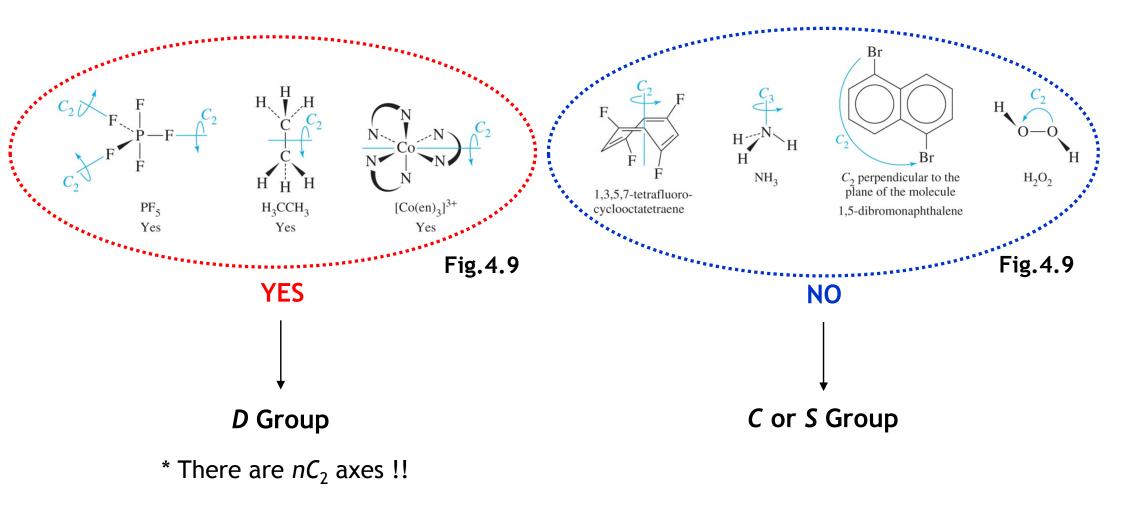


Fig.4.8

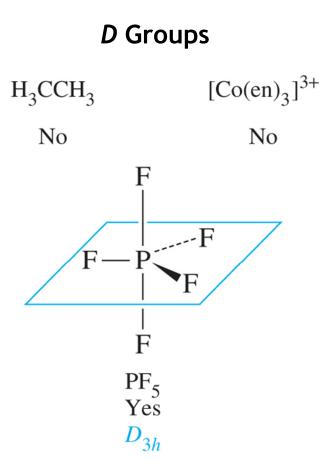


3. Does the molecule have any  $C_2$  axes perpendicular to the  $C_n$  axis?

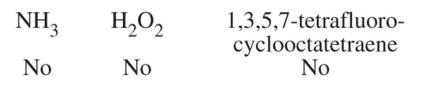


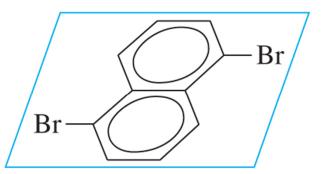


4. Does the molecule have a mirror plane ( $\sigma_h$  horizontal plane) perpendicular to the  $C_n$  axis?



### C or S Groups



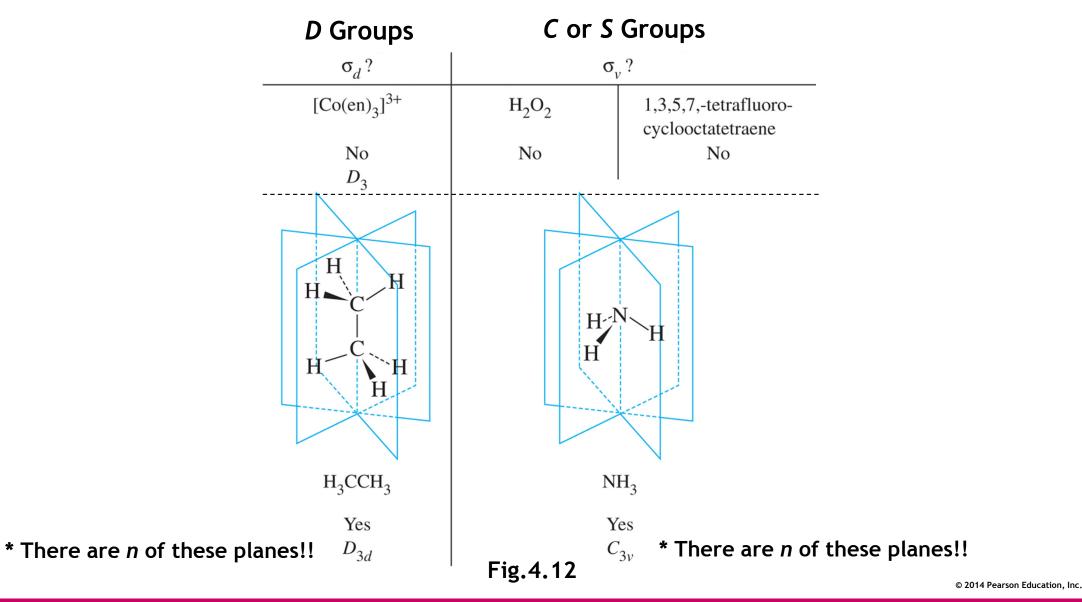


1,5-dibromonaphthalene Yes  $C_{2h}$ 

T.-S.You

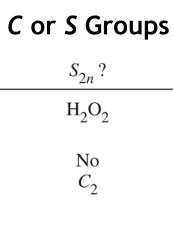


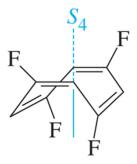
5. Does the molecule have any mirror plane ( $\sigma_v$  or  $\sigma_d$ ) that **contain** the  $C_n$  axis?



CONTRACTOR

### 6. Is there an $S_{2n}$ axis collinear with the $C_n$ axis?





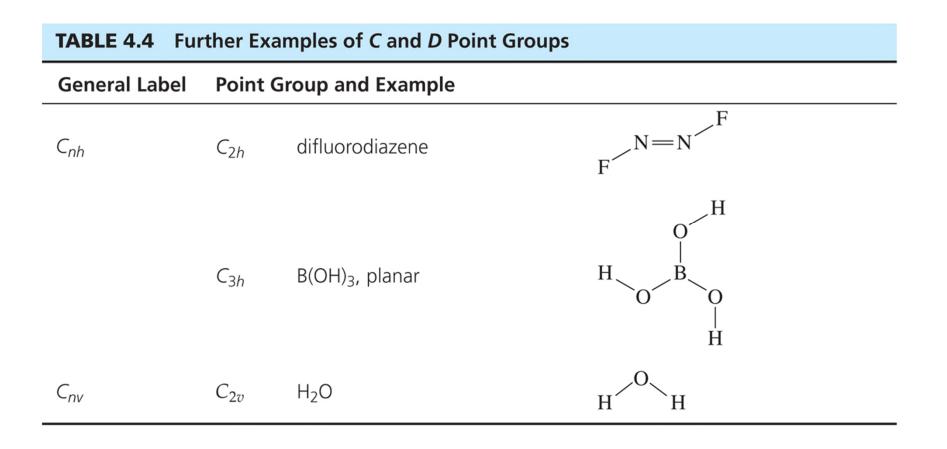
1,3,5,7,-tetrafluorocyclooctatetraene Yes 12  $S_4$ 

### Fig.4.12

Inorganic Chemistry1



### More Examples





### More Examples

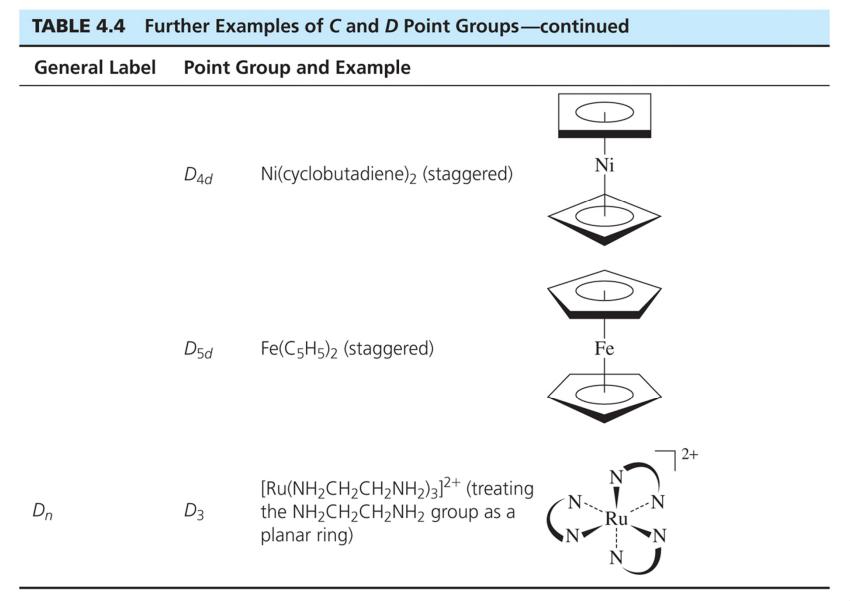
| TABLE 4.4         Further Examples of C and D Point Groups—continued |                 |                                                                                                                            |                                 |  |  |
|----------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
| General Label                                                        | Point (         | Group and Example                                                                                                          |                                 |  |  |
|                                                                      | C <sub>3v</sub> | PCI <sub>3</sub>                                                                                                           | CI P CI                         |  |  |
|                                                                      | C <sub>4v</sub> | BrF <sub>5</sub> (square pyramid)                                                                                          | F F F<br>F F                    |  |  |
|                                                                      | $C_{\infty_V}$  | HF, CO, HCN                                                                                                                | $H-F$ $C\equiv O$ $H-C\equiv N$ |  |  |
| Cn                                                                   | C <sub>2</sub>  | N <sub>2</sub> H <sub>4</sub> , which has a <i>gauche</i> conformation                                                     | H N N H                         |  |  |
|                                                                      | C <sub>3</sub>  | $P(C_6H_5)_3$ , which is like a three-<br>bladed propeller distorted out of<br>the planar shape by a lone pair<br>on the P | P<br>P                          |  |  |



### More Examples

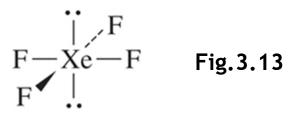
| TABLE 4.4 Fu    | rther Exa       | amples of C and D Point Groups  | continued             |  |  |
|-----------------|-----------------|---------------------------------|-----------------------|--|--|
| General Label   | Point (         | Point Group and Example         |                       |  |  |
| D <sub>nh</sub> | D <sub>3h</sub> | BF <sub>3</sub>                 | $F \xrightarrow{F} F$ |  |  |
|                 | $D_{4h}$        | PtCl <sub>4</sub> <sup>2-</sup> | $Cl Cl Cl^{2-}$       |  |  |
|                 | D <sub>5h</sub> | $Os(C_5H_5)_2$ (eclipsed)       |                       |  |  |
|                 | D <sub>6h</sub> | benzene                         |                       |  |  |
|                 | $D_{\infty h}$  | F <sub>2</sub> , N <sub>2</sub> | F-F $N=N$             |  |  |
|                 |                 | acetylene ( $C_2H_2$ )          | H-C=C-H               |  |  |
| D <sub>nd</sub> | D <sub>2d</sub> | $H_2C = C = CH_2$ , allene      | H C = C = C < H H     |  |  |

#### More Examples



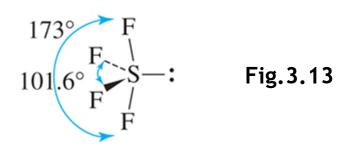
### • Example 4.2:

- 1) XeF<sub>4</sub>: 1. no low or high symm.
  - 2. *C*<sub>4</sub>
  - 3. perpendicular  $C_2$  (x 4)  $\rightarrow D$  Group
  - 4. horizontal plane  $\rightarrow D_{4h}$



2)  $SF_4$ : 1. no low or high symm.

- 2.  $C_2$ 3. no other  $C_2 \rightarrow C$  or S Group 4. no  $\sigma_h$ 5.  $\sigma_v (x 2) \rightarrow C_{2v}$
- 3)  $IOF_3$ : 1. no low or high symm.
  - 2.  $\sigma_h$
  - 3. *C*<sub>s</sub>



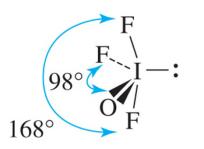


Fig.3.16



### • C versus D Point Group Classification

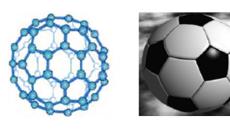
|                                                                    | D Classifications            | C Classifications              |
|--------------------------------------------------------------------|------------------------------|--------------------------------|
| General Case:                                                      |                              |                                |
| Look for $C_2$ axes perpendicular to the highest order $C_n$ axis. | $nC_2$ axes $\perp C_n$ axis | No $C_2$ axes $\perp C_n$ axis |
| Subcategories:                                                     |                              |                                |
| If a horizontal plane of symmetry exists:                          | D <sub>nh</sub>              | C <sub>nh</sub>                |
| If <i>n</i> vertical planes exist:                                 | D <sub>nd</sub>              | C <sub>nv</sub>                |
| If no planes of symmetry exist:                                    | D <sub>n</sub>               | C <sub>n</sub>                 |

NOTES:

- 1. Vertical planes contain the highest order  $C_n$  axis. In the  $D_{nd}$  case, the planes are designated *dihedral* because they are between the  $C_2$  axes—thus, the subscript *d*.
- 2. The presence of a  $C_n$  axis does not guarantee that a molecule will be in a D or C category; the high-symmetry  $T_d$ ,  $O_h$ , and  $I_h$  point groups and related groups have a large number of  $C_n$  axes.
- 3. When in doubt, you can always check the character tables (Appendix C) for a complete list of symmetry elements for any point group.



- Group Related to  $I_h$ ,  $O_h$  and  $T_d$  Group
  - $\begin{cases} I_h: C_{60}, \\ O_h: SF_6 \\ T_d: CH_4 \end{cases}$



- purely rotational subgroup: I, O, T

-  $T_h$ :  $T + i \rightarrow S_6$ ,  $S_6^5$ ,  $\sigma_h$  (e.g. W[N(CH\_3)\_2]\_6

$$\subseteq E$$
 + only proper axes w/o *i*,  $\sigma$ , S<sub>n</sub>

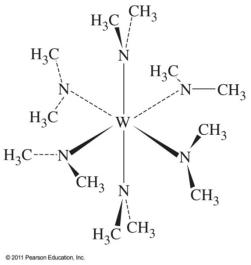


Fig.4.13

| TABLE 4.5 S    | ymm | etry Operatio            | ons for Hig             | h-Symmet                | ry Point Groups a       | nd Ti | neir Rotat                | ional Subgr                            | roups                    |             |
|----------------|-----|--------------------------|-------------------------|-------------------------|-------------------------|-------|---------------------------|----------------------------------------|--------------------------|-------------|
| Point Group    | Syn | nmetry Opera             | ations                  |                         |                         |       |                           |                                        |                          |             |
| I <sub>h</sub> | Ε   | 12C <sub>5</sub>         | $12C_{5}^{2}$           | 20C <sub>3</sub>        | 15C <sub>2</sub>        | i     | 12 <i>S</i> <sub>10</sub> | 12 <i>S</i> <sub>10</sub> <sup>3</sup> | 20 <i>S</i> <sub>6</sub> | 15 <i>o</i> |
| 1              | Ε   | 12 <i>C</i> <sub>5</sub> | $12C_{5}^{2}$           | 20C <sub>3</sub>        | 15C <sub>2</sub>        |       |                           |                                        |                          |             |
| O <sub>h</sub> | Ε   | 8C <sub>3</sub>          | 6C <sub>2</sub>         | 6 <i>C</i> <sub>4</sub> | $3C_2 \ (\equiv C_4^2)$ | i     | 6 <i>S</i> <sub>4</sub>   | 8 <i>S</i> <sub>6</sub>                | $3\sigma_h$              | $6\sigma_d$ |
| 0              | Ε   | 8C <sub>3</sub>          | 6C <sub>2</sub>         | 6 <i>C</i> <sub>4</sub> | $3C_2 \ (\equiv C_4^2)$ |       |                           |                                        |                          |             |
| T <sub>d</sub> | Ε   | 8C <sub>3</sub>          | 3C <sub>2</sub>         |                         |                         |       | 6 <i>S</i> <sub>4</sub>   |                                        |                          | $6\sigma_d$ |
| Т              | Ε   | $4C_{3}^{4}C_{3}^{2}$    | 3C <sub>2</sub>         |                         |                         |       |                           |                                        |                          |             |
| T <sub>h</sub> | Ε   | $4C_3 \ 4C_3^2$          | 3 <i>C</i> <sub>2</sub> |                         |                         | i     | 4 <i>S</i> <sub>6</sub>   | 4 <i>S</i> <sub>6</sub> <sup>5</sup>   | $3\sigma_h$              |             |



- Properties of Group
  - symmetry operations for ammonia

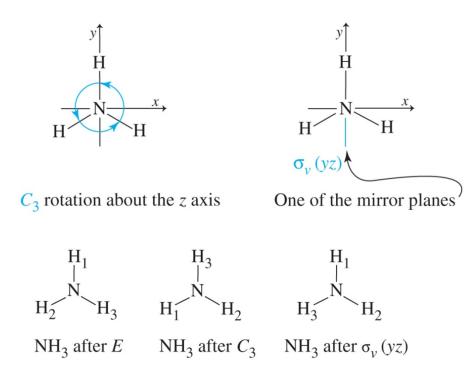


Fig.4.14

# 4.3 Properties and Representations of Groups



#### TABLE 4.6 Properties of a Group

| Property of Group                                                                                                                                                                                                                                                                                              | Examples from Point Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Each group must contain an <b>identity</b> operation that commutes (in other words, $EA = AE$ ) with all other members of the group and leaves them unchanged ( $EA = AE = A$ ).                                                                                                                            | $C_{3\nu}$ molecules (and <i>all</i> molecules) contain the identity operation <i>E</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2. Each operation must have an <b>inverse</b> that, when<br>combined with the operation, yields the identity<br>operation (sometimes a symmetry operation may<br>be its own inverse). <i>Note:</i> By convention, we per-<br>form combined symmetry operations <i>from right</i><br><i>to left</i> as written. | $H_{1} \xrightarrow{C_{3}} H_{3} \xrightarrow{H_{3}} H_{1} \xrightarrow{C_{3}^{2}} H_{1}$ $H_{2} \xrightarrow{N} H_{3} \xrightarrow{K} H_{1} \xrightarrow{N} H_{2} \xrightarrow{K} H_{2}$ $H_{2} \xrightarrow{N} H_{3}$ $H_{3} \xrightarrow{K} H_{3} \xrightarrow{K} H_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} H_1 \\ H_2 \\ H_3 \\ H_3 \\ H_3 \\ H_3 \\ H_2 \\ H_3 \\ H_2 \\$ |
| 3. The product of any two group operations must also be a member of the group. This includes the product of any operation with itself.                                                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                | $ \xrightarrow{\sigma_{v}} \overset{H_{3}}{\underset{H_{2}}{\overset{I}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\overset{N}{\underset{M_{1}}{\underset{M_{1}}{\underset{N}{\underset{M_{1}}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                | $\sigma_v C_3$ has the same overall effect as $\sigma_v''$ , therefore we write $\sigma_v C_3 = \sigma_v''$ . It can be shown that the products of any two operations in $C_{3v}$ are also members of $C_{3v}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

4. The associative property of combination must hold. In other words, A(BC) = (AB)C.

$$C_3(\sigma_v \sigma_v') = (C_3 \sigma_v) \sigma_v'$$



Important information about the symmetry aspect of point group is summarized,,,

to understand character table,,,, **properties of** <u>matrices</u> should be considered !!

(basis of the tables)

in character table !!

• matrix: an ordered array of numbers

e.g.) 
$$\begin{bmatrix} 3 & 7 \\ 2 & 1 \end{bmatrix}$$
 or [2 0 1 3 5]

# 4.3.1 Matrices

#### Multiplication



- 1) # vertical column of the 1<sup>st</sup> matrix = # of horizontal rows of the 2<sup>nd</sup> matrix
- 2) match term by term each term in a row must be multiplied by its corresponding term in the appropriate column of the 2<sup>nd</sup> matrix
- 3) product's  $\int \#$  row (determined by the row of the 1<sup>st</sup> matrix)

# column (determined by the column of the 2<sup>nd</sup> matrix)

$$C_{ij} = \Sigma (A_{ik} \times B_{kj})$$

 $\begin{cases} C_{ij} = \text{product matrix, w/ i row \& j column} \\ A_{ik} = \text{initial matrix, w/ i rows \& k column} \\ B_{kj} = \text{initial matrix, w/ k row \& j column} \end{cases}$ 

#### Examples



- Symmetry operations: matrix representations
- e.g.)  $H_2O: C_{2v}$  point group E,  $C_2$ ,  $\sigma_v(xz)$ ,  $\sigma_v'(yz)$

z axis xz plane as the plane of molecule

: symmetry operation may be expressed as a transformation matrix

[new coordinates] = [transformation matrix] [old coordinates]

1) 
$$C_2$$
:  

$$\begin{cases} x' = new \ x = -x \\ y' = new \ y = -y \\ z' = new \ z = z \end{cases} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

in matrix notation,

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ z \end{pmatrix}$$

$$new \\ coordinates \end{pmatrix} = \begin{bmatrix} transformation \\ matrix \end{bmatrix} \begin{bmatrix} old \\ coordinates \end{bmatrix} = \begin{bmatrix} new \text{ coordinates} \\ ln \text{ terms of old} \end{bmatrix}$$

### 4.3.2 Representation



2) 
$$\sigma_{v}(xz)$$
:  

$$\begin{cases} x' = new \ x = x \\ y' = new \ y = -y \\ z' = new \ z = z \end{cases} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

in matrix notation

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ -y \\ z \end{pmatrix}$$

The transformation matrices for the four symmetry operations.

$$E: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad C_2: \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \sigma_v(xz): \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \sigma_v'(yz): \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



• Matrix representation: satisfies the properties of group

: each matrix corresponds to an operation

e.g.) multiplying two matrices  $\leftrightarrow$  multiplying two corresponding operations

(\* carrying out to left,  $C_2 \sigma_v$  means  $\sigma_v$  followed by  $C_2$ )

$$C_2 X \sigma_v(xz) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \sigma'_v(yz)$$

• Character: only for a square matrix

← the **sum of the # on the diagonal** from upper left to lower right

e.g.) for  $C_{2v}$  from the above operation



- transformation matrix is 'block diagonalized'  $\rightarrow$  broken into smaller matrices along the

diagonal

$$E: \begin{bmatrix} [1] & 0 & 0 \\ 0 & [1] & 0 \\ 0 & 0 & [1] \end{bmatrix} \quad C_2: \begin{bmatrix} [-1] & 0 & 0 \\ 0 & [-1] & 0 \\ 0 & 0 & [1] \end{bmatrix} \quad \sigma_v(xz): \begin{bmatrix} [1] & 0 & 0 \\ 0 & [-1] & 0 \\ 0 & 0 & [1] \end{bmatrix} \quad \sigma_v'(yz): \begin{bmatrix} [-1] & 0 & 0 \\ 0 & [1] & 0 \\ 0 & 0 & [1] \end{bmatrix}$$

1x1 matrix along the principal diagonal

- x, y, z coordinates are independent each other

 $\begin{array}{c} \leftarrow \\ \left\{ \begin{array}{l} {\rm each} \ {\bf 1}, \ {\bf 1} \ {\rm position} \ \rightarrow \ {\rm result} \ {\rm of} \ {\rm the} \ {\bf x} \ {\rm coordinate} \\ {\rm each} \ {\bf 2}, \ {\bf 2} \ {\rm position} \ \rightarrow \ {\rm result} \ {\rm of} \ {\rm the} \ {\bf y} \ {\rm coordinate} \\ {\rm each} \ {\bf 3}, \ {\bf 3} \ {\rm position} \ \rightarrow \ {\rm result} \ {\rm of} \ {\rm the} \ {\bf z} \ {\rm coordinate} \end{array} \right. \ \end{array}$ 





#### Reducible and irreducible representations

 $four matrix elements for x \rightarrow representation of the group
 four matrix elements for y \rightarrow representation of the group
 four matrix elements for z \rightarrow representation of the group$ 

|     | Ε           | C <sub>2</sub> | σ <b><sub>v</sub>(xz)</b> | $\sigma_{m{v}}{}'$ (yz) | Coordinate Used |
|-----|-------------|----------------|---------------------------|-------------------------|-----------------|
|     | ( 1         | -1             | 1                         | -1                      | X               |
|     | - { 1       | -1             | -1                        | 1                       | У               |
|     | $\lfloor 1$ | 1              | 1                         | 1                       | Ζ               |
| - Γ | 3           | -1             | 1                         | 1                       |                 |

 $\checkmark$  each row: irreducible representation  $\rightarrow$  cannot simplified further

<sup>•</sup> Σ of irreducible representation: reducible representation



- Character table: a complete set of irreducible representations for a point group
- $C_{2v}$  character table w/ the irreducible representations

| <i>C</i> <sub>2<i>v</i></sub> | Ε | C <sub>2</sub> | σ <b><sub>v</sub>(xz)</b> | $\sigma_{m{v}}{}'(m{y}m{z})$ |                   |                 |
|-------------------------------|---|----------------|---------------------------|------------------------------|-------------------|-----------------|
| $A_1$                         | 1 | 1              | 1                         | 1                            | Ζ                 | $x^2, y^2, z^2$ |
| $A_2$                         | 1 | 1              | -1                        | -1                           | $R_z$             | ху              |
| <i>B</i> <sub>1</sub>         | 1 | -1             | 1                         | -1                           | x, R <sub>y</sub> | XZ              |
| <i>B</i> <sub>2</sub>         | 1 | -1             | -1                        | 1                            | y, R <sub>x</sub> | уz              |

© 2011 Pearson Education, Inc.

• The labels used w/ character tables

| х, у, z               | transformations of the x, y, z coordinates or combinations thereof        |
|-----------------------|---------------------------------------------------------------------------|
| $R_x$ , $R_y$ , $R_z$ | rotation about the x, y, and z axes                                       |
| R                     | any symmetry operation, such as $C_2$ or $\sigma_v(xz)$                   |
| χ                     | character of an operation                                                 |
| <i>i</i> and <i>j</i> | designation of different representations, such as $A_1$ or $A_2$          |
| h                     | order of the group (the total number of symmetry operations in the group) |



#### **TABLE 4.7** Properties of Characters of Irreducible Representations in Point Groups

| Pro | perty                                                                                                                                                                                                                                     | Example: C <sub>2v</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | The total number of symmetry operations<br>in the group is called the <b>order</b> ( <i>h</i> ). To<br>determine the order of a group, simply<br>total the number of symmetry operations<br>listed in the top row of the character table. | Order = 4<br>four symmetry operations: E, C <sub>2</sub> , $\sigma_v(xz)$ ,<br>and $\sigma_v'(yz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.  | Symmetry operations are arranged in<br>classes. All operations in a class have<br>identical characters for their transforma-<br>tion matrices and are grouped in the<br>same column in character tables.                                  | Each symmetry operation is in a separate class; therefore, there are four columns in the character table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.  | The number of irreducible representations<br>equals the number of classes. This means<br>that character tables have the same number<br>of rows and columns (they are square).                                                             | Because there are four classes, there must also be four irreducible representations—and there are.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.  | The sum of the squares of the <b>dimensions</b> (characters under <i>E</i> ) of each of the irreducible representations equals the order of the group.                                                                                    | $1^{2} + 1^{2} + 1^{2} + 1^{2} = 4 = h$ , the order of the group.<br>$\frac{\boxed{c_{2v}  E  c_{2}  \sigma_{v}(xz)  \sigma_{v}'(yz)}{A_{1}  1  1  1  1  z  x^{2}, y^{2}, A_{1}  1  1  z  x^{2}, y^{2}, A_{2}  x^{2}, y^{2}, A_{3}  x^{2}, y^{2}, x^{2}, x^{2}, y^{2}, A_{3}  x^{2}, y^{2}, x^{2}, y^{2}, x^{2}, x^{2}, y^{2}, x^{2}, x^{2}, y^{2}, x^{2}, $ |
|     | $h = \sum_{i} [\chi_i(E)]^2$                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## 4.3.3 Character Table



#### TABLE 4.7 Properties of Characters of Irreducible Representations in Point Groups

 For any irreducible representation, the sum of the squares of the characters multiplied by the number of operations in the class (see Table 4.8 for an example), equals the order of the group.

$$h = \sum_{R} [\chi_i(\mathbf{R})]^2$$

 Irreducible representations are orthogonal to each other. The sum of the products of the characters, multiplied together for each class, for any pair of irreducible representations is 0.

$$\sum_{R} \chi_{i}(\mathbf{R}) \chi_{j}(\mathbf{R}) = 0, \text{ when } i \neq j$$

Taking any pair of irreducible representations, multiplying together the characters for each class, multiplying by the number of operations in the class (see Table 4.8 for an example), and adding the products gives zero.

 A totally symmetric representation, with characters of 1 for all operations, is included in all groups. For  $A_2$ ,  $1^2 + 1^2 + (-1)^2 + (-1)^2 = 4 = h$ . Each operation is its own class in this group.

 $B_1$  and  $B_2$  are orthogonal:

| (1)(1) | + (-1)(-1) | + (1)(-1)      | +(-1)(1) = 0      |
|--------|------------|----------------|-------------------|
| Ε      | $C_2$      | $\sigma_v(xz)$ | $\sigma_{v}'(yz)$ |

Each operation is its own class in this group.

| C <sub>2v</sub> | Ε | C <sub>2</sub> | σ <b><sub>v</sub>(xz)</b> | $\sigma_{m v}{}'(m yz)$ |                   |                 |
|-----------------|---|----------------|---------------------------|-------------------------|-------------------|-----------------|
| $A_1$           | 1 | 1              | 1                         | 1                       | Ζ                 | $x^2, y^2, z^2$ |
| $A_2$           | 1 | 1              | -1                        | -1                      | $R_z$             | хy              |
| B <sub>1</sub>  | 1 | -1             | 1                         | -1                      | x, R <sub>y</sub> | XZ              |
| B <sub>2</sub>  | 1 | -1             | -1                        | 1                       | $y, R_x$          | уz              |

 $C_{2\nu}$  has  $A_1$ , in which all characters = 1.



- Understanding  $A_2$  representation of the  $C_{2v}$  group using properties of group
- 4 columns  $\rightarrow$  thus, 4 classes (property 2) of symmetry operations (property 3)
- orthogonality (property 6)

 $\begin{array}{c} \leftarrow \text{ a product of } A_1 \text{ and unknown } \rightarrow \text{ must have } \\ \left\{ \begin{array}{c} \text{ irreducible rep. 1 (X 2)} \\ \text{ irreducible rep. -1 (X 2)} \end{array} \right\} \end{array} \xrightarrow[]{} 0 \end{array}$ 

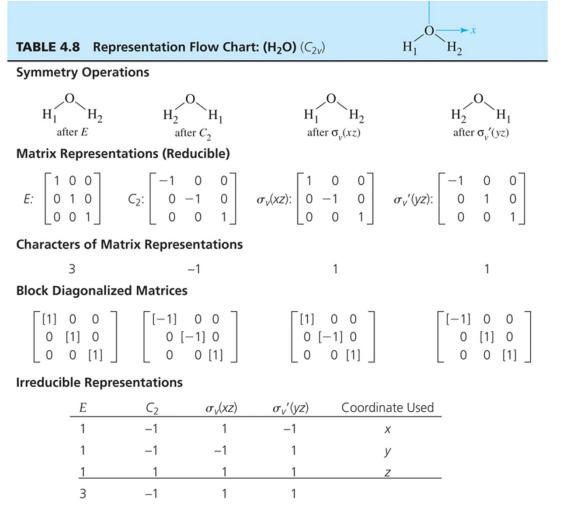
- the character of *E* operation  $\rightarrow$  1 ( $\because$  1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> + x<sup>2</sup> = 4, x = 1 (property 4))
- no two operations can be the same

$$\hookrightarrow \therefore A_2: 1 \quad 1 \quad -1 \quad -1$$

| <i>C</i> <sub>2<i>v</i></sub> | Ε   | C <sub>2</sub> | σ <b><sub>v</sub>(xz)</b> | $\sigma_{m v}{}'$ (yz) |                   |                 |
|-------------------------------|-----|----------------|---------------------------|------------------------|-------------------|-----------------|
| $A_1$                         | 1   | 1              | 1                         | 1                      | Ζ                 | $x^2, y^2, z^2$ |
| $A_2$                         | ??? |                |                           |                        |                   |                 |
| <i>B</i> <sub>1</sub>         | 1   | -1             | 1                         | -1                     | x, R <sub>y</sub> | XZ              |
| <i>B</i> <sub>2</sub>         | 1   | -1             | -1                        | 1                      | y, R <sub>x</sub> | уZ              |

#### 4.3.3 Character Table



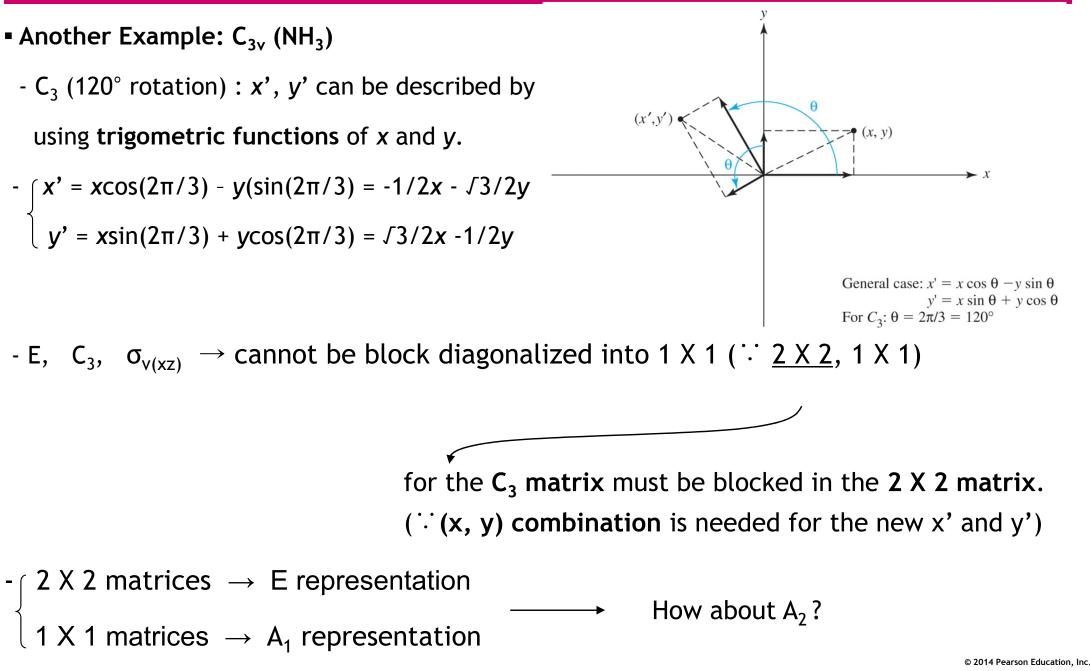


#### **Character Table**

| $C_{2v}$              | Ε | C <sub>2</sub> | $\sigma_v(xz)$ | $\sigma_v'(yz)$ | Matchin           | g Functions     |
|-----------------------|---|----------------|----------------|-----------------|-------------------|-----------------|
| $A_1$                 | 1 | 1              | 1              | 1               | z                 | $x^2, y^2, z^2$ |
| A <sub>2</sub>        | 1 | 1              | -1             | -1              | $R_z$             | xy              |
| <i>B</i> <sub>1</sub> | 1 | -1             | 1              | -1              | x, R <sub>y</sub> | XZ              |
| <i>B</i> <sub>2</sub> | 1 | -1             | -1             | 1               | $y, R_x$          | уz              |

## 4.3.3 Character Table







| <b>TABLE 4.9</b> | Properties of the Characters for the C <sub>3v</sub> Point Group |
|------------------|------------------------------------------------------------------|
|------------------|------------------------------------------------------------------|

| Property                                                                                                                 | C <sub>3v</sub> Example                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Order                                                                                                                 | 6 (6 symmetry operations)                                                                                                                     |
| 2. Classes                                                                                                               | 3 classes:<br>E<br>$2C_3 (= C_3, C_3^2)$<br>$3\sigma_v (= \sigma_v, \sigma_v', \sigma_v'')$                                                   |
| 3. Number of irreducible representations                                                                                 | 3 (A <sub>1</sub> , A <sub>2</sub> , E)                                                                                                       |
| 4. Sum of squares of dimensions equals the order of the group                                                            | $1^2 + 1^2 + 2^2 = 6$                                                                                                                         |
| 5. Sum of squares of characters multiplied<br>by the number of operations in each class<br>equals the order of the group | $\frac{E}{A_1: 1^2 + 2(1)^2 + 3(1)^2} = 6$<br>$A_2: 1^2 + 2(1)^2 + 3(-1)^2 = 6$<br>$E: 2^2 + 2(-1)^2 + 3(0)^2 = 6$                            |
|                                                                                                                          | (Multiply the squares by the number of symmetry operations in each class.)                                                                    |
| 6. Orthogonal representations                                                                                            | The sum of the products of any two representations multiplied by the number of operations in each class equals 0. Example of $A_2 \times E$ : |
|                                                                                                                          | (1)(2) + 2(1)(-1) + 3(-1)(0) = 0                                                                                                              |
| 7. Totally symmetric representation                                                                                      | $A_1$ , with all characters = 1                                                                                                               |



- Additional Features of Character Table
  - 1.  $C_3$ ,  $C_3^2$  are in the same class  $\rightarrow$  clockwise and counter-clockwise direction
  - 2. C<sub>2</sub> perpendicular to the principal axis  $\rightarrow \begin{cases} C_2': \text{ pass through several atoms} \\ C_2'': \text{ pass b/w the atoms} \end{cases}$
  - 3. {horizontal plane:  $\sigma_h$ vertical plane:  $\sigma_v$ ,  $\sigma_d$
  - 4. in the right side of the column in the character table,

 $\left\{ \begin{array}{c} x, y, z \\ R_x, R_y, R_z \\ xy, xz, yz \end{array} \right\} \quad \text{in the character table} \longrightarrow \left\{ \begin{array}{c} p_x, p_y, p_x \\ d_{xy}, d_{xz}, d_{yz} \end{array} \right.$ 

totally symmetric — s

in  $C_{3v}$  — (x, y) have the same symm. properties as the *E* irreducible rep.

- Additional Features of Character Table
  - 5. matching the symm. operation w/list in the top row

← confirm any point group

- 6. labeling of irreducible representation (symm.  $\rightarrow$  1, antisymm.  $\rightarrow$  -1)
  - a) letter: dimension of the irreducible representation

| Dimension | Symm. label |  |  |
|-----------|-------------|--|--|
| 1         | Α, Β        |  |  |
| 2         | E           |  |  |
| 3         | Т           |  |  |

b) subscript:  $1 \rightarrow$  symmetric to a C<sub>2</sub> rotation perpendicular to the principal axis

 $2 \rightarrow antisymm.$  to the  $\rm C_2$ 

- \* if no perpendicular C<sub>2</sub>,,,
  - 1 symm. to a vertical plane
  - 2 antisymm. to a vertical plane

| C <sub>2v</sub>       | Ε | C <sub>2</sub> | σ <b><sub>v</sub>(xz)</b> | σ <b>v</b> ′ <b>(yz)</b> |                   |                 |
|-----------------------|---|----------------|---------------------------|--------------------------|-------------------|-----------------|
| $A_1$                 | 1 | 1              | 1                         | 1                        | Ζ                 | $x^2, y^2, z^2$ |
| $A_2$                 | 1 | 1              | -1                        | -1                       | $R_z$             | xy              |
| <i>B</i> <sub>1</sub> | 1 | -1             | 1                         | -1                       | x, R <sub>y</sub> | XZ              |
| <i>B</i> <sub>2</sub> | 1 | -1             | -1                        | 1                        | y, R <sub>x</sub> | уz              |



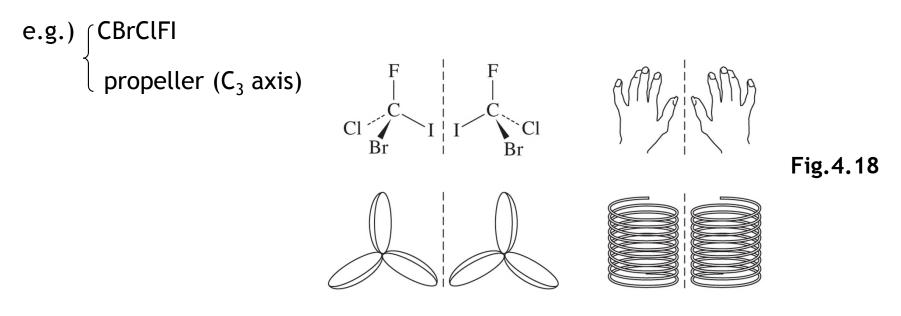
#### Additional Features of Character Table

- 6. c) subscript:  $\begin{cases} g (gerade) \rightarrow symm. to i \\ u (ungerade) \rightarrow antisymm. to i \end{cases}$

d) { single prime (')  $\rightarrow$  symm to  $\sigma_h$ double prime (")  $\rightarrow$  antisymm. to  $\sigma_h$ 

#### 4.4.1 Chirality

• chiral/dissymmetric: molecules that are not superimposable on their mirror image

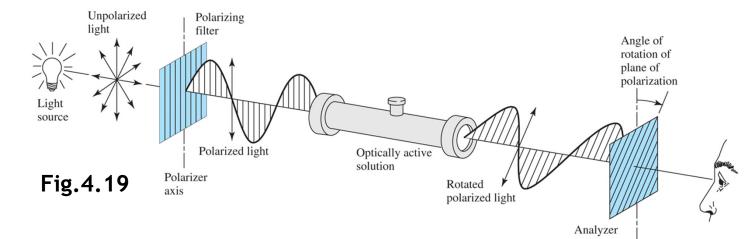


#### 4.4.1 Chirality

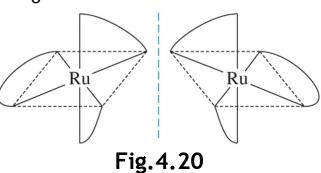
• optical activity: the ability of chiral molecules to rotate plane-polarized light

1) clockwise rotation: dextrorotatory

2) anticlockwise rotation: levorotatory

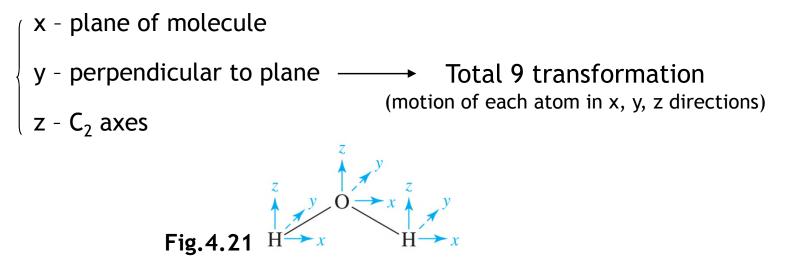


e.g.) [Ru(NH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>)<sub>3</sub>]<sup>2+</sup>  $\rightarrow$  D<sub>3</sub>





- : Symmetry can help to determine **the mode of vibration** of molecule
- water ( $C_{2v}$  symm.): x, y, z coordinates should be used for each atom.



| TABLE 4.10       Degrees of Freedom |                             |                        |                     |                      |  |  |  |  |  |  |
|-------------------------------------|-----------------------------|------------------------|---------------------|----------------------|--|--|--|--|--|--|
| Number of<br>Atoms                  | Total Degrees of<br>Freedom | Translational<br>Modes | Rotational<br>Modes | Vibrational<br>Modes |  |  |  |  |  |  |
| N (linear)                          | ЗN                          | 3                      | 2                   | 3N - 5               |  |  |  |  |  |  |
| 3 (HCN)                             | 9                           | 3                      | 2                   | 4                    |  |  |  |  |  |  |
| N (nonlinear)                       | ЗN                          | 3                      | 3                   | 3N - 6               |  |  |  |  |  |  |
| 3 (H <sub>2</sub> O)                | 9                           | 3                      | 3                   | 3                    |  |  |  |  |  |  |



- to assign translation, rotation, vibration motion  $\rightarrow$  use a **transformation matrix** for a symm. operation !!  $\leftarrow$  for H<sub>2</sub>O w/ 9 transformation  $\rightarrow$  e.g.) 9 x 9, C<sub>2</sub> matrix

```
[new axes] = [transformation matrix (9 x 9)] [initial axes]
```

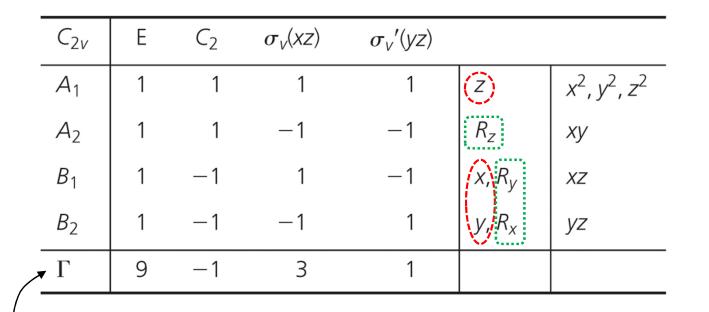
- use the <u>character</u> of the representation matrices instead of individual matrix

- $\hookrightarrow$  sum of along the diagonal
  - $\leftarrow$  no-zero entry appears along the diagonal of the matrix only for an atom that does not change position.

- reducible representation  $\boldsymbol{\Gamma}$ 

E: 9  $\rightarrow$  no change  $\begin{array}{l} \mathsf{C_2:} \left\{ \begin{array}{l} 2\mathsf{H} \end{tabular} \rightarrow \ 0: \ \text{change position} \\ 0 \end{tabular} \right. \\ \left. \begin{array}{l} 0 \end{tabular} \rightarrow \ (-1) \end{tabular} + \ (-1) \end{tabular} + \ 1 \end{tabular} = \ -1: \\ \left\{ \begin{array}{l} \mathsf{x}, \ \mathsf{y} \end{tabular} - \ \text{reversed} \\ \mathsf{z} \end{tabular} \end{array} \right. \\ \left. \begin{array}{l} \mathsf{z} \end{tabular} \end{array} \right. \\ \left. \begin{array}{l} \mathsf{z} \end{tabular} \end{array} \right\} \end{array}$  $\sigma_v(xz)$  (plane of molecule): 3 - 3 + 3 = 3 :  $\begin{cases} x, z - unchanged \\ y - change the direction \end{cases}$  $\left\{ \begin{array}{l} \sigma_{v}'(yz): \begin{cases} 2H \rightarrow 0: \text{ changed position} \\ 0 \rightarrow \\ x \text{ - change direction} \\ y, z \text{ - unchanged} \end{array} \right. \longrightarrow -1 + 1 + 1 = 1$ 





reducible representation

: Because all nine directions vectors are included in this representation,,

it represents **all the motions** of molecules:

3 translations,

- 3 rotations,
- 3 vibrations



- Reducing a reducible representation to irreducible representations
  - : separate the reducible representation into its component irreducible representations
  - reduction formula

- For  $H_2O_{,,}$ 

$$n_{A1} = 1/4[(9)(1) + (-1)(1) + (3)(1) + (1)(1)] = 3$$
  

$$n_{A2} = 1/4[(9)(1) + (-1)(1) + (3)(-1) + (1)(-1)] = 1$$
  

$$n_{B1} = 1/4[(9)(1) + (-1)(-1) + (3)(1) + (1)(-1)] = 3$$
  

$$n_{B2} = 1/4[(9)(1) + (-1)(-1) + (3)(-1) + (1)(1)] = 2$$

$$\rightarrow$$
  $\Gamma = 3A_1 + A_2 + 3B_1 + +2B_2$ 

| <i>C</i> <sub>2<i>v</i></sub> | E | C <sub>2</sub> | $\sigma_v(xz)$ | $\sigma_v'(yz)$ |                   |                 |
|-------------------------------|---|----------------|----------------|-----------------|-------------------|-----------------|
| $A_1$                         | 1 | 1              | 1              | 1               | Z                 | $x^2, y^2, z^2$ |
| $A_2$                         | 1 | 1              | -1             | -1              | Rz                | ху              |
| <i>B</i> <sub>1</sub>         | 1 | -1             | 1              | -1              | х, R <sub>y</sub> | xz              |
| <i>B</i> <sub>2</sub>         | 1 | -1             | -1             | 1               | y, R <sub>x</sub> | уz              |
| Г                             | 9 | -1             | 3              | 1               |                   |                 |

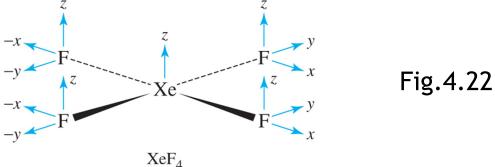


| <ul> <li>according to the character table,,,</li> </ul>               | TABLE 4.11 Sy           | ymmetry of Molecula      |                                                                    |                             |
|-----------------------------------------------------------------------|-------------------------|--------------------------|--------------------------------------------------------------------|-----------------------------|
| ( translation along x, y, z: $A_1 + B_1 + B_2$                        | All Motions             | Translation<br>(x, y, z) | Rotation<br>( <i>R<sub>x</sub>, R<sub>y</sub>, R<sub>z</sub></i> ) | Vibration (Remaining Modes) |
|                                                                       | 3A <sub>1</sub>         | A <sub>1</sub>           |                                                                    | 2A <sub>1</sub>             |
| $\left\{ \text{ rotation } (R_x, R_y, R_z): A_2 + B_1 + B_2 \right\}$ | A <sub>2</sub>          |                          | A <sub>2</sub>                                                     |                             |
| with mattices and a state D                                           | 3 <i>B</i> <sub>1</sub> | B <sub>1</sub>           | <i>B</i> <sub>1</sub>                                              | <i>B</i> <sub>1</sub>       |
| l vibration mode: 2A <sub>1</sub> + B <sub>1</sub>                    | 2 <i>B</i> <sub>2</sub> | <i>B</i> <sub>2</sub>    | B <sub>2</sub>                                                     |                             |

| TABL                  | TABLE 4.12         The Vibrational Modes of Water |                                                                                                                                     |  |  |  |  |  |  |  |
|-----------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <i>A</i> <sub>1</sub> | НН                                                | Symmetric stretch: change in dipole moment; more distance between positive hydrogens and negative oxygen <i>IR active</i>           |  |  |  |  |  |  |  |
| B <sub>1</sub>        | H                                                 | Antisymmetric stretch: change in dipole moment; change in distances between positive hydrogens and negative oxygen <i>IR active</i> |  |  |  |  |  |  |  |
| <i>A</i> <sub>1</sub> | H◀O≻H                                             | Symmetric bend: change in dipole moment; angle between H—O vectors changes<br>IR active                                             |  |  |  |  |  |  |  |



**Example 4.4)** Using the x, y, z coordinates for each atom in XeF<sub>4</sub>, <u>determine the reducible</u> <u>representation</u> for all molecular motions; <u>reduce</u> this representation to its irreducible components; and classify these representations into <u>translational, rotational, and vibrational</u> mode. z = z



sol) only the coordinates on atoms that <u>do not move</u> when symmetry operations are applied can

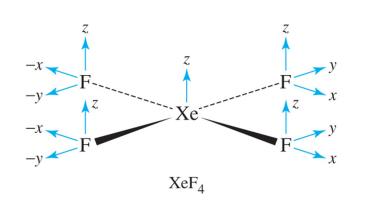
give rise to nonzero elements along the diagonals of transformation matrices.

if unchanged  $\rightarrow 1$ 

if reverse the direction  $\rightarrow$  -1

if move to another coordinate  $\rightarrow 0$ 





| D <sub>4h</sub> | E | 2 <i>C</i> <sub>4</sub> | C <sub>2</sub> | 2C <sub>2</sub> ′ | 2C <sub>2</sub> " | i  | 2 <i>S</i> <sub>4</sub> | $\sigma_h$ | $2\sigma_v$ | $2\sigma_d$ |                  |                  |
|-----------------|---|-------------------------|----------------|-------------------|-------------------|----|-------------------------|------------|-------------|-------------|------------------|------------------|
| $A_{1g}$        | 1 | 1                       | 1              | 1                 | 1                 | 1  | 1                       | 1          | 1           | 1           |                  | $x^2 + y^2, z^2$ |
| A <sub>2g</sub> | 1 | 1                       | 1              | -1                | -1                | 1  | 1                       | 1          | -1          | -1          | Rz               |                  |
| B <sub>1g</sub> | 1 | -1                      | 1              | 1                 | -1                | 1  | -1                      | 1          | 1           | -1          |                  | $x^2 - y^2$      |
| B <sub>2g</sub> | 1 | -1                      | 1              | -1                | 1                 | 1  | -1                      | 1          | -1          | 1           |                  | ху               |
| Eg              | 2 | 0                       | -2             | 0                 | 0                 | 2  | 0                       | -2         | 0           | 0           | $(R_{x}, R_{y})$ | (xz, yz)         |
| A <sub>1u</sub> | 1 | 1                       | 1              | 1                 | 1                 | -1 | -1                      | -1         | -1          | -1          |                  |                  |
| A <sub>2u</sub> | 1 | 1                       | 1              | -1                | -1                | -1 | -1                      | -1         | 1           | 1           | z                |                  |
| B <sub>1u</sub> | 1 | -1                      | 1              | 1                 | -1                | -1 | 1                       | -1         | -1          | 1           |                  |                  |
| B <sub>2u</sub> | 1 | -1                      | 1              | -1                | 1                 | -1 | 1                       | -1         | 1           | -1          |                  |                  |
| Eu              | 2 | 0                       | -2             | 0                 | 0                 | -2 | 0                       | 2          | 0           | 0           | (x, y)           |                  |

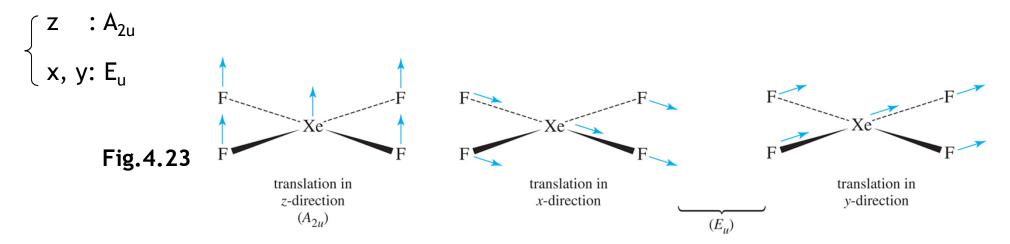
There are 15 possible motions to be considered.

If reduced,,

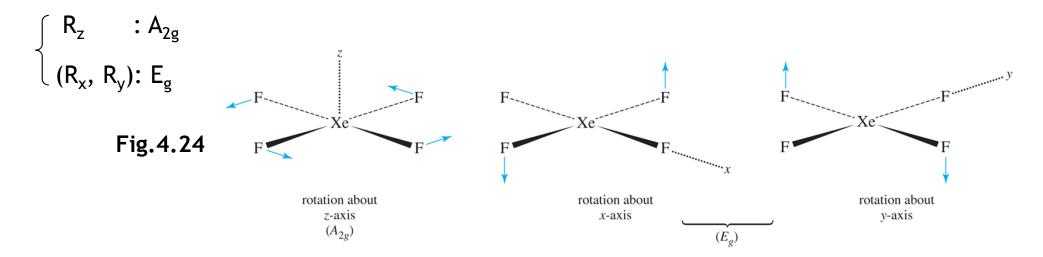
$$rightarrow \Gamma = A_{1g} + A_{2g} + B_{1g} + B_{2g} + E_g + 2A_{2u} + B_{2u} + 3E_u$$



translational motion: motion through space w/ x, y, z components



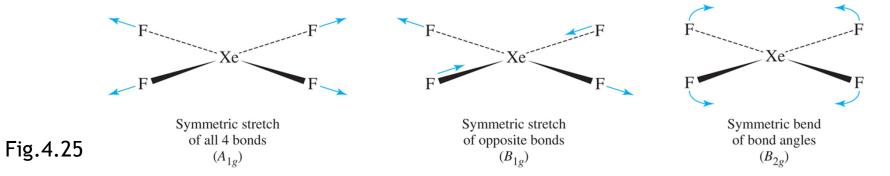
• Rotationl motion: rotation about the x, y, z axis ( $R_x$ ,  $R_y$ ,  $R_z$ )





- vibrational motion: 15 3 3 = 9
  - : ( change in bond length & angles

motion both within and out of the molecular place



|       | $\Gamma$ (all modes) | Translation | Rotation | Vibration        |
|-------|----------------------|-------------|----------|------------------|
|       | $A_{1g}$             |             |          | $A_{1g}$         |
|       | $A_{2g}$             |             | $A_{2g}$ |                  |
|       | $B_{1g}$             |             |          | $B_{1g}$         |
|       | $B_{2g}$             |             |          | $B_{2g}$         |
|       | $E_g$                |             | $E_g$    |                  |
|       | 2 A <sub>2u</sub>    | $A_{2u}$    |          | $A_{2u}$         |
|       | B <sub>2u</sub>      |             |          | B <sub>2u</sub>  |
|       | 3 E <sub>u</sub>     | Eu          |          | 2 E <sub>u</sub> |
| Total | 15                   | 3           | 3        | 9                |



Example 4.5) Reduce the following representation to their irreducible representation in the

point group indicated (refer to the character table in Appendix C).

| C <sub>2h</sub> | Е | C <sub>2</sub> | i | $\sigma_{h}$ |
|-----------------|---|----------------|---|--------------|
| Г               | 4 | 0              | 2 | 2            |

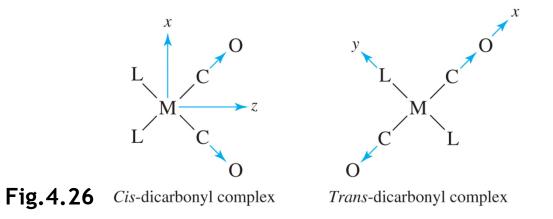


- Infrared Spectra
  - **infrared active**: if there is any change in the **dipole moment** of the molecule
    - Gusing group theory: infrared active if it corresponds to an irreducible

representation that has the *same symmetry* (or transformation) as the

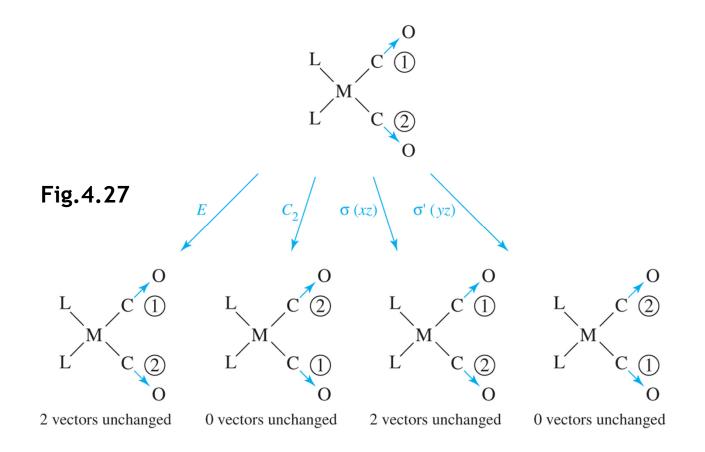
Cartesian coordinates <u>x, y, z</u>

- $\because$  vibrational motion  $\rightarrow$  change the center of charge  $\rightarrow$  change in dipole moment
- We can **select particular vibrational modes**!!!
  - e.g.) C-O stretching bands cis- and trans-dicarbonyl square planar complex





1) *cis*-ML<sub>2</sub>(CO<sub>2</sub>) point group  $C_{2v}$ :



- either an increase or decrease in the C-O distance

G generate the reducible representation usign C-O bond as shown in Fig.4.27

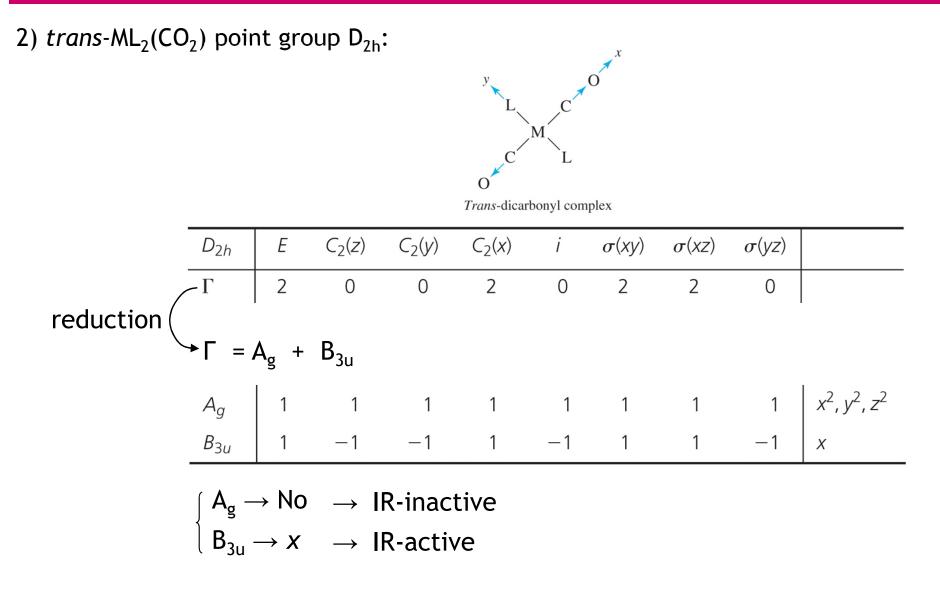


#### 1) *cis*-ML<sub>2</sub>(CO<sub>2</sub>) point group $C_{2v}$ .

|             |                                                                | E                | $C_2$             | σ ( <i>xz</i>                     | ) σ <sup>·</sup> | ' ( <i>yz</i> )                  |                                                        |         |          |         |
|-------------|----------------------------------------------------------------|------------------|-------------------|-----------------------------------|------------------|----------------------------------|--------------------------------------------------------|---------|----------|---------|
| reduction ( | Г                                                              | 2                | 0                 | 2                                 |                  | 0                                |                                                        |         |          |         |
| reduction ( | /                                                              |                  |                   |                                   |                  |                                  |                                                        |         |          |         |
|             | → F :                                                          | = A <sub>1</sub> | + B <sub>1</sub>  |                                   |                  |                                  |                                                        |         |          |         |
|             | C <sub>2v</sub>                                                | E                | $C_2$             | $\sigma_V(XZ)$                    | $\sigma_V(yz)$   |                                  |                                                        |         |          |         |
|             | Г                                                              | 2                | 0                 | 2                                 | 0                |                                  |                                                        |         |          |         |
|             | A <sub>1</sub>                                                 | 1                | 1                 | 1                                 | 1                | z                                | $x^2, y^2, z^2$                                        |         |          |         |
|             | <i>B</i> <sub>1</sub>                                          | 1                | —1                | 1                                 | -1               | <i>x</i> , <i>R</i> <sub>y</sub> | x <sup>2</sup> , y <sup>2</sup> , z <sup>2</sup><br>xz |         |          |         |
|             | $\begin{cases} A_1 \rightarrow \\ B_1 \rightarrow \end{cases}$ | Z<br>X           | $\rightarrow$ Bot | h A <sub>1</sub> , B <sub>1</sub> | transfo          | rms as                           | the Carte                                              | sian co | ordinate | es z, x |

∴ There are two IR active vibrational modes!!





... There are one IR active vibrational modes!!



 $\therefore$  Therefore, to distinguish *cis*- & *trans*-ML<sub>2</sub>(CO)<sub>2</sub> by IR.

Example 4.6) Determine the # of IR active CO stretching modes for fac-Mo(CO)<sub>3</sub>(CH<sub>3</sub>CH<sub>2</sub>CN)<sub>3</sub>

$$CH_{3}CN - M_{0} - C \rightarrow O$$

$$Fig. 4.28$$

#### Raman Spectra

- laser  $\rightarrow$  excite molecule to higher electronic states ("virtual" states)
  - $\rightarrow$  decay of excited states to various vibrational states  $\rightarrow$  provide info. about vibrational *E*
- Raman active if there is a change in **polarizability**!!!

 $4 xy, yz, xz, x^2, y^2, z^2$  functions or linear combination of any of these.

e.g.) XeO<sub>4</sub> (T<sub>d</sub>)  $\rightarrow$  two Raman bands at 778 & 878 cm<sup>-1</sup>. Confirm these bands!!

 $\therefore$  Both the A<sub>1</sub> & T<sub>2</sub>  $\rightarrow$  two Raman active bands!!