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▪ Molecular orbital (MO) theory uses the methods of group theory to describe the bonding in

molecules.

▪ Symmetry properties and relative E of atomic orbital (AO) → determine the way of forming MO

▪ Filling the MO w/ e- follows three rules 1) aufbau principle

2) Hund’s rule

3) Pauli exclusion principle

▪ If,,, total E of e- in MO < total E of e- in AO

molecule is stable

▪ if,,, total E of e- in MO > total E of e- in AO

molecule is unstable → doesn’t form

▪ In this chapter→ explain approaches to describe bonding using group theory & simpler

methods

→ developing the symm. concept required for more complex cases
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▪ Schrödinger equation is used → for approximate solutions to the molecules

by LCAO (linear combination of atomic orbitals): sum & differences of the atomic wave

functions

e.g.) H2’s wave function

Ψ = caψa + cbψb

as distance b/w two atoms↓ → orbital overlap → probability for e- in the overlap region ↑

→ ∴ molecular orbitals form

e- in bonding molecular orbitals → space b/w nuclei

5.1 Formation of Molecular Orbitals from Atomic Orbitals

MO wave function
adjustable coefficient

atomic wave function
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▪ Three conditions for overlap to lead to bonding

1) the symm. of the orbitals must be such that regions w/ the same sign of ψ overlap

2) E of AO’s must be similar

if great E difference→ E of e- on formation of MO↓ → reduction in E of e- is too small

3) distance b/w atoms short enough to provide good overlap

not so short that repulsion forces interfere

if all conditions are met, then,,,

→ overall E of e- in MO is lower than the E of e- in the AO

∴ The molecule has a lower E than the separate atoms!!

5.1 Formation of Molecular Orbitals from Atomic Orbitals
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5.1.1 Molecular Orbitals from s Orbitals

▪ Interaction b/w two s orbitals (H2)

AO wave functions: ψ(1sa), ψ(1sb)

two atoms approach each other

MO → linear combination of AO: sum & diff. b/w two orbitals

For H2In general form

Ψ (σ) = N[caψ(1sa) + cbψ(1sb)] = 1/√2[ψ(1sa) + ψ(1sb)](Ha + Hb)

Ψ (σ*) = N[caψ(1sa) - cbψ(1sb)] = 1/√2[ψ(1sa) - ψ(1sb)](Ha - Hb)

N = normalizing factor, so ∫
*ψ ψ =1dr

ca & cb = adjustable coefficient

two AO are identical

coefficient are nearly identical

shading→ indicating diff. signs!!
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5.1.1 Molecular Orbitals from s Orbitals

▪ σ MO – sum of two AO

- e- concentration b/w two nuclei ↑

- both atomic wave functions contribute

- lower E

bonding MO

e- attract the nuclei, hold them

together

▪ σ* MO – diff. of two AO

- a node (zero e- density) b/w the nuclei

- cancellation of the two functions

- higher E

anti bonding MO

e- causes a mutual repulsion b/w

atoms

Fig.5.1
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5.1.1 Molecular Orbitals from s Orbitals

▪ nonbonding orbitals – E of nonbonding orbitals = E of AOs

if one AO of one atom does not have a counter part on the other atom.

sometimes by coincidence → just non-bonding

Fig.5.1
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5.1.1 Molecular Orbitals from s Orbitals

▪ σ: orbitals that are symmetric to rotation about the line connecting the nuclei

▪ asterisk (*): anti bonding orbitals

▪ # resulting MO = # initial AO

in H2, two AO result in forming one antibonding orbital

one bonding orbital
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5.1.2 Molecular Orbitals from p Orbitals

▪ as two orbitals overlap 1) if same signs → e- probability in the overlap region ↑

2) if opposite signs → e- probability in the overlap region ↓

Fig.5.2(a)
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5.1.2 Molecular Orbitals from p Orbitals

▪ Fig.5.2(b)

▪ π : a change in sign of the wave function w/ C2 rotation

px, py
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5.1.2 Molecular Orbitals from p Orbitals

▪ Overlap of two regions w/ the same sign→ e- concentration ↑

Overlap of two regions w/ the opposite sign→ node (zero e- density)

▪ if there is nodes of AO → nodes of MO

pz: σ, σ* orbitals

px, py: π, π* orbitals

▪ Fig.5.2(c): if overlap equally w/ the same sign & the opposite sign

e.g.) s + px bonding → cancel →No MO results!!

antibonding

in other description,,

symm. do not match → No combination!!

Fig.5.2(c)
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5.1.3 Molecular Orbitals from d Orbitals

▪ in the heavier elements (TM) → d orbitals are involved

- two dz
2 → σ, σ* 

- dxz, dyz→ π, π*

- dx
2
-y

2, dxy (two parallel planes)

→ δ, δ*

- δ: change in sign on C4 rotation about

the bond axis
Fig.5.3
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5.1.3 Molecular Orbitals from d Orbitals

- zero net overlap, cannot form MO

Fig.5.3

▪ The # of nodes in orbitals

- σ orbital: no node including the line of center

- π orbital: one node including the line of center

- δ orbital: two node including the line of center

▪ Example 5.1)
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5.1.4 Nonbonding Orbitals and other Factors

- if E of MO = E of AO → nonbonding!!

can happen in larger molecules

e.g.) 3 AO w/ same symm. → 3 MO

similar E

1) bonding

2) Nonbonding

3) antibonding

- relative E of AO: Fig.5.4.

∴ The closer the E match,, the stronger the interaction!!
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5.2 Homonuclear Diatomic Molecule

5.2.1 Molecular Orbitals

- MO description is more in agreement w/ experiment than Lewis electron-dot diagram does.

- Fig.5.5: full set of MO for the homonuclear diatomic molecules of the first 10 elements

the order of E level for MO→ similar pattern

Fig.5.5
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5.2.2 Orbital Mixing

- Mixing : molecular orbitals w/ similar E interact if they have appropriate symm.

- Orbitals w/ similar E can interact if they have the same symm.

lower the E of the lower orbitals

raise the E of the higher orbitals

e.g.) in the homonuclear diatomics

σg(s), σg(p) orbitals: same symm. σg

lower the E of the σg(2s)

raise the E of the σg(2p)

σu*(s), σu*(p) orbitals: same symm. σu

lower the E of the σu*(2s)

raise the E of the σu*(2p)

Fig.5.6

Inorganic Chemistry1 CBNU T.-S.You

© 2014 Pearson Education, Inc.



5.2.2 Orbital Mixing

- Alternatively, 4 MO form 4 AO ( 2 x 2s, 2 x 2pz) w/ similar E.

Ψ = c1ψ(2sa) ± c2ψ(2sb) ± c3ψ(2pa) ± c4ψ(2pb)

- the lowest E MO: contains larger c1, c2

the largest E MO: contains larger c3, c4

two intermediate MO: contain intermediate values of all 4 coefficients

The symm. of these four orbitals → mixing!!

- s-p mixing have an important influence on E of the molecule.

e.g.) 1) Li2 to N2 : E (σg, 2pz) > E (πu, 2px & 2py)

inverted order!!

2) B2, C2: magnetic properties of molecules
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5.2.3 Diatomic Molecules of the First & Second Periods

- Two types of magnetic behavior

1) paramagnetic: attracted by an external magnetic field

unpaired e- acting as tiny magnets

2) diamagnetic: no unpaired e-

repelled slightly by magnetic field

- from N2 → Ne2: as the nuclear charge↑ → attract e- strongly

→ E of all the orbital ↓

decreasing in E is larger for→ σ than π

(∵ greater overlap for σ orbitals)

Fig.5.7
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5.2.3 Diatomic Molecules of the First & Second Periods

▪ H2 [σg
2 (1s)]:   1 σ orbital → 2 e- @ bonding→ bond order: 1 → single bond

H+: 1 e- in σ → bond order: 1/2 → less stable

: d(H-H)+ = 105.2 pm; d(H-H) = 74.1 pm

▪ He2 [σg
2 σu

*2(1s)]: 2 e- @ bonding

2 e- @ antibonding

no tendency to form diatomic molecules

exist as free atoms!!

No bond!!

▪ Li2 [σg
2 (2s)]: single Li-Li bond

▪ Be2 [σg
2 σu

*2(2p)]: 2 e- @ bonding

2 e- @ antibonding

Be2 is unstable chemical species !!

No bond (like He2)!!
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5.2.3 Diatomic Molecules of the First & Second Periods

▪ B2 [πu
1 πu

1(2p)]: example showing an advantage of MO model over Lewis dot picture

B2 is paramagnetic!!!

: E level shifts by mixing of s & p orbitals

if no mixing → E (σg(2p)) < E (πu(2p))

diamagnetic !!!

but, mixing of σg(2s) & σg(2p) → paramagnetic!!

lower E of σg(2s)

increase E of σg(2p), higher than E of πu(2p)

: bond order = 1
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5.2.3 Diatomic Molecules of the First & Second Periods

▪ C2 [πu
2 πu

2(2p)] - double bond (all e- paired)

both HOMO w/ π symm.

- two π bonds, no σ bond

- rarely encountered

- but, acetylide ion (C2
2- w/ cations) is known.

bond order = 3 (πu
2 πu

2 σg
2)
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5.2.3 Diatomic Molecules of the First & Second Periods

▪ N2 [πu
2 πu

2 σg
2(2p)] – triple bond short d(N-N) = 109.8 pm

high bond dissociation E = 942 KJ/mol

- as E AO ↓→ effective nuclear charge ↑

shielding effect & e-e interactions

as Z ↑ → E diff. b/w 2s & 2p

B: 5.7 eV

C: 8.8 eV

N: 12.4 eV

less effective σg(2s) & σg(2p) mixing

σg(2p) & πu(2p) are very close in E !!

(Order of E is a bit controversial)
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5.2.3 Diatomic Molecules of the First & Second Periods

▪ O2 [σg
2 πu

2 πu
2 πg

*1 πg
*1 (2p)] – paramagnetic (Fig.5.7)

- liquid O2 is held b/w the poles of magnet as it is poured.

- O2+, O2-, O2
2- are also known

- bond order vs. bond distances

- small mixing of σg(2s) & σg(2p)

E (πu(2p)) > E (σg(2p))
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5.2.3 Diatomic Molecules of the First & Second Periods

▪ F2 [σg
2 πu

2 πu
2 πg

*2 πg
*2 (2p)] – diamagnetic

- N2, O2, F2 → the order of σg(2p) & πu(2p) is diff.

- E diff. b/w 2s & 2p for F = 21.5 eV

mixing ↓→ “normal” order of MO

▪ Ne2 - all MO are filled

- # bonding e- = # antibonding e-

b.o = 0

▪ triumph of MO theory: 1) 2 unpaired e- for O2

paramagnetic (Lewis dot diagram cannot explains!!)

2) shifting of orbital E

B2: paramagnetic

C2: diamagnetic
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5.2.3 Diatomic Molecules of the First & Second Periods

▪ Bond length in homonuclear diatomic molecule

- Fig.5.8

- B – N (6 – 10 ve-): as # e- ↑→ # bonding orbitals ↑ → bond strength ↑

→ bond length ↓

- O – F: reversed trend

additional e- → antibonding orbitals

Inorganic Chemistry1 CBNU T.-S.You

© 2014 Pearson Education, Inc.



5.2.3 Diatomic Molecules of the First & Second Periods

- As # ve- ↑→ nuclear charge ↑ → covalent radii ↓

good agreement w/ the bond distance of the matching diatomic molecules

- but, beyond N covalent radii : N > O > F

bond distance in diatomic molecule: N2 < O2 < F2

∵e- in antibonding orbitals

- Fig.5.9
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5.2.3 Diatomic Molecules of the First & Second Periods
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5.2.4 Photoelectron Spectroscopy

- one of the more direct ways of detecting orbital E

O2 + hv (photons)→ O2
+ + e-

Ionization E = hv (E of photon) – kinetic E of the expelled e-

(can be measured)

(UV or X-ray)

Fig.5.10 Fig.5.11
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5.2.4 Photoelectron Spectroscopy

- the order of the highest occupied orbitals: levels are very close for N2

less σg(2s), σg(2p) orbital mixing

: but, experiment shows σg above πu

- Interaction b/w e- E & vibrational E

E levels of vibrational E→ closer than in E

E in many diff. vibrational levels

transition of e- level occurs from diff. vibrational levels

resulting in multiple peaks

- Orbitals strongly involved in bonding → multiple peaks

less involved bonding → only a few peaks

e.g.) for N2: πu→ more involved in bonding than σ, 

CO: Fig. 5.13
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5.3 Heteronuclear Diatomic Molecules

5.3.1 Polar Bonds

▪ atomic E levels are diff. → shifting the MO levels

estimate using the ‘orbital potential E’ (Table5.2, Fig.5.13)

attractive E → ∴ negative values

▪ from left to right of the periodic table

orbital potential E → more negative

∵ nuclear charge ↑

→ attraction of e- ↑
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5.3.1 Polar Bonds

▪ MO of heteronuclear diatomic molecules

: unequal contribution from AOs

diff. coefficients of AOs

▪ AO E diff. ↑ → interaction ↓

▪ the closer the AO in E to MO, the stronger the contribution to the MO
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▣ carbon monoxide

- the more electronegative element

→ AO w/ lower potential E

- Fig. 5.13

: 2s, 2p of O has the lower E

: right side is pulled down

: E of πu(2p) < E of σg(2p)

: interaction b/w 2pz of O and 2s & 2p of C

-19.43 eV

-15.85 eV

-10.66 eV

5.3.1 Polar Bonds
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▣ carbon monoxide

:  bonding orbital 2σ ← 2s of O

antibonding orbital 2σ* ← 2s of C

: orbital mixing b/w   two σ

∴ 3σ E > 1π E

larger split in E

two σ*

: bond order = 3

5.3.1 Polar Bonds
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HOMO: 3σ larger density

larger lobe on the carbon

: interaction → lone-pair w/ a vacant orbital on M

Example 5.3) HF : no interaction b/w 2s (F) & 1s (H)

too large E diff.

attraction b/w 2pz (F) & 1s(H)

: 1-bonding pair

3 lone-pairs

▪ Frontier orbitals: HOMO, LUMO

MO diagram explains CO reaction chemistry

for Ni(CO)4, MO(CO)4: M-C-O (rather than M-O-C)

(based on the e-

negativity consideration)

5.3.1 Polar Bonds
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▪ Why HOMO of CO have greater e- density on carbon?

Which orbital has the higher E level?

due to the AO contribution,,,

pz of O → to 2σ*, 3σ, 3σ* MOs (total 3) → relatively weaker contrib. to each one

pz of C→ to 3σ, 3σ* MOs (total 2) → relatively stronger contrib. to each one

frontier orbitals can contribute e- (HOMO)

accept e- (LUMO)

5.3.1 Polar Bonds
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5.3.2 Ionic Compounds and Molecular Orbitals

▪ considered as the limiting form of polarity in heteronuclear diatomic molecules

▪ as electronegativity diff. ↑ → orbital E diff. ↑ → e- concentration shifts toward the more

electronegative atom

at the limit: complete e- transfer

negative ion + positive ion

∴ ionic compound
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5.3.2 Ionic Compounds and Molecular Orbitals

▪ Fig.5.15: LiF
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5.3.2 Ionic Compounds and Molecular Orbitals

▪ in ionic crystal: ions are held together in 3-D lattice,,

by electrostatic attraction + covalent bonding

Li+ is surrounded by six F-

▪ LiF reaction

1) formation of the ions

Li (s) → Li (g)           161 KJ/mol (sublimation)

Li (g)→ Li+ + e- 531 KJ/mol (IE)

1/2F2(g) → F (g) 79 KJ/mol (dissociation)

F (g) + e-→ F-(g) -328 KJ/mol (-EA)

Li (s) + 1/2F2 (g) → Li+ (g) + F- (g) 433 KJ/mol

2) crystal formation

Li+ (g) + F- (g) → LiF (g) -709 KJ/mol (ion pair)

Li+ (g) + F- (g) → LiF (s) -1239 KJ/mol (lattice enthalphy)
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5.4 Molecular Orbitals for Lager Molecules

▪ molecules consisting of three or more atom

more complex orbitals

start w/ linear molecules → ‘group orbital’ concept

5.4.1 FHF-

▪ group orbitals: collections of matching orbitals on outer atoms

interact w/ central-atom orbitals w/ the proper symm.

▪ Fig.5.16: group orbitals of two F

potentially could interact w/ central orbitals

Inorganic Chemistry1 CBNU T.-S.You



5.4.1 FHF-

F: 2s → lowest E group

matching sign (1) vs. opposite sign (2)

2pz→ same sign toward center (3) vs.

opposite sign to center (4)

2px, 2py → (5) ~ (8)

parallel to each other

matching (5, 7) vs. opposite (6,8)

H: only 1s

∴ H 1s only interacts w/ (1), (3)

other orbitals→ non-bonding

Fig.5.17: bonding vs. antibonding
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5.4.1 FHF-

▪ stronger interaction?

potential E - H 1s : -13.61 eV

- F 2pz: -18.65 eV

2s : -40.17 eV

∴ interaction w/ 2pz of F

>> interaction w/ 2s of F

Inorganic Chemistry1 CBNU T.-S.You
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5.4.1 FHF-

(4) - (8): five p orbitals are essentially nonbonding

(3): bonding and antibonding

(1) - (2): very lower E level

→ so, essentially non-bonding
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5.4.1 FHF-

▪ according to the MO diagram: bonding in FHF-→ 3-center, 2-e- bond

(2-e- bond delocalized over three atoms)

two e- occupy a low-E orbital formed by the interaction of

all three atoms

▪ in general: E of MO derived from three or more atoms is lower than that from two atoms.
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5.4.2 CO2

▪ same procedure can be used for more complex molecules

more complex linear or non-linear

▪ General Procedure

1) Determine the point group of the molecule.

if a linear molecule, use D2h for D∞h

C2h for C∞v

2) Assign x, y, z coordinates to atoms.

highest order rotation axis → choose as the z axis of the central atom

for nonlinear molecule→ y axes of atoms: point toward the central atom

3) Construct a reducible representation

for each set of outer atom orbitals: s, px, py, pz

use the same procedure as in the case of the vector

changing positions→ 0

remaining positions→ 1

reversing signs→ -1
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5.4.2 CO2

▪ General Procedure

4) Reduce each representation

finding the symm. of the group orbitals or

the symm.-adapted linear combinations (SALCS)

5) Identify the AO of the central atom w/ the same symm.

6) Form MO by combing AO of the central atom w/ matching symm. & similar E

group orbitals
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5.4.2 CO2

▪ In CO2 : group orbital of O → same as F in FHF-

central C→ contain s, p

1) Point group: D∞h → D2h

2) Coordinate system: z axis→ C∞ axis

3) Reducible representation for outer atom orbitals

for oxygen→ four sets: 2s, 2px, 2py, 2pz
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5.4.2 CO2

4) Group orbitals from reducible representation

Reduce step 3

e.g) Γ(2s) = Ag + B1u

Repeat the process for all sets

Fig.5.19
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5.4.2 CO2

5) Matching orbitals on the central atoms

determine AOs of C, which interact w/ the group orbitals

use the character table of D2h

6) Formation of Molecular Orbitals

- group orbitals 1,2 → from 2s orbitals of O

Ag & B1u

group 1 ↔ 2s of C (Ag)

group 2 ↔ 2pz of C (B1u)

Fig.5.20

Fig.5.21
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5.4.2 CO2

6) Formation of molecular orbitals

- group orbitals 3,4 → from 2pz orbitals of O

Ag & B1u

group 3 ↔ 2s of C (Ag)

group 4 ↔ 2pz of C (B1u)

Fig.5.22
- All four interactions are symm.

allowed!!

then, which interaction is the strongest?
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5.4.2 CO2

-The more the similar E b/w orbitals→ the stronger the interaction is!!

E match b/w group 3 & 2s of C→ E diff.: 3.58 eV

match b/w group 1 & 2s of C→ E diff.: 12.95 eV

▪ Fig. 5.23

Group 3 & 2s of C is better match!!
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5.4.2 CO2

6) Formation of Molecular Orbitals

- group orbitals 5,6 → from 2py orbitals of O

B2u & B3g

group 5 ↔ 2py of C (B2u)

group 6 ↔ no orbital of C w/ B3g symm. → nonbonding

- group 7,8 → from 2px orbitals of O

B3u & B2g

group 7 ↔ 2px of C (B3u)

group 8 ↔ no orbital of C w/ B2g symm. → nonbonding

- electron filling: 16 e- → two nonbonding σ orbitals

two bonding σ orbitals

two bonding π orbitals

two nonbonding π orbitals

four bonds in the molecules
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5.4.2 CO2

▪ Fig. 5.26 - Numerical values of the coefficients of the AO

in the MO can be obtained

→ using computer software
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5.4.3 H2O

- Nonlinear molecule

1) Point group: C2v (Fig. 5.27)

2) C2 axis → z axis

xz plane → plane of molecule

3) hydrogen atoms → used as basis & conduct operations

Fig.5.27
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5.4.3 H2O

3) hydrogen atoms → used as basis & conduct operations

Fig.5.27
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5.4.3 H2O

4) Reduce it, Γ = A1 + B1

5) Match group orbitals w/ symmetries of oxygen

A1: 1/√2[(Ψ(Ha) + Ψ(Hb)] ← group orbitals of 1s w/ matching signs

B1: 1/√2[(Ψ(Ha) - Ψ(Hb)] ← group orbitals of 1s w/ opposite signs

normalizing factor: N = 1/√(ΣCi
2)

ci: the coefficients on the AO
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5.4.3 H2O

5) Match group orbitals w/ symmetries of oxygen
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5.4.3 H2O

6) AO + group orbital w/ the same symm. is combined.

molecular orbitals (Table 5.4)
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5.4.3 H2O

6) MO of H2O
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5.4.4 NH3

- NH3 : pyradimal shape w/ a lone pair e-

: C3v

- looking down on the lone pair

- yz plane passing through one of the H

- reducible representation for three H 1s
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5.4.4 NH3

- three group orbitals are generated

one A1 symm. → easily seen

two E symm. → more difficult to see

- Two conditions to describe MO equation:

1) Σ of the square of the coefficients of each 

of the AO in the LCAO→ 1/each AO

2) symm. of the central AO↔ symm. of group

orbitals

e.g.) E symm. of SALCs↔ E symm. of N px, py

one node/each E group orbitals
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5.4.4 NH3

- E symm. group orbital combinations of NH3:

1/√6[2Ψ(Ha) - Ψ(Hb) - Ψ(Hc)] &

1/√2[Ψ(Hb) - Ψ(Hc)]

- A1 symm. group orbital combinations of NH3:

1/√3[2Ψ(Ha) + Ψ(Hb) + Ψ(Hc)]

1) condition #1: Ha → (2/√6)2 = 2/3

Hb, Hc→ (1/√6)2 + (1/√2)2 = 2/3

Ha, Hb, Hc → 1/√3[Ψ(Ha) + Ψ(Hb) + Ψ(Hc)]

→ (1/√3)2 = 1/3 each

∴ Ha = 2/3 + 1/3 = 1; Hb, Hc = 2/3 + 1/3 = 1

- Central N:

s, pz → A1 symm.

px, py→ E symm.

E

A1

1s of H group orbitals (A1 + E)
matching
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5.4.4 NH3

- Fig. 5.30 - Fig. 5.31
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5.4.4 NH3

- Fig. 5.31 1) A1 (s, pz) of N + A1 of H

three a1 orbitals

one bonding (2a1)

one nonbonding (3a1)

one antibonding (4a1)

2) E (px, py) of N + E of H

four e orbitals

two bonding (1e)

two antibonding (2e)

both of these are degenerated
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5.4.4 NH3

- e- filling: 8 e- from the lowest E level

three bonds

one lone-pair

- E level: H 1s → -13.6 eV → generate a large diff. b/w bonding & antibonding

N 2p → -13.18 eV

N 2s → -25.56 eV → quite small interaction w/ H

- HOMO of NH3: slightly bonding of a result of 2pz(N) & 1s (H) interactions

but nearly-nonbonding →  act as the lone-pair

Lewis base
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5.4.5 BF3

- BF3: Lewis acid

e--pair acceptor → MO acting as an acceptor

trigonal shape

F contains 2s, 2p

- coordinates: C3→ z axis

py of F → point toward B

px → plane of molecule

- BF3: B-F bonds contain double-bond character
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5.4.5 BF3

- MO: a2” symm. – bonding π orbital (x 1)

delocalized over all four atoms

slightly lower than five nonbondings

∴ slightly π bonding

a1’, e symm. – σ bonding orbital (x 3)

3a1’, 2e’, 1a2’, 4e’ – nonbonding (x 8)

- LUMO of BF3: antibonding b/w 2pz of B & 2pz of F

empty π orbital (a2”)

can act as an e--pair acceptor
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5.4.5 BF3

- other trigonal species: SO3, NO3
-, CO3

2-

isoelectronic w/ BF3

can be treated using similar MO

3 σ-bonding orbitals + 1 π-bonding orbitals

- using these method – MO’s order approximately can be estimate

but,

E can not be found

intermediate E level →  particularly difficult

nonbonding

slightly bonding

slightly antibonding

Described as essentially nonbonding!!

Inorganic Chemistry1 CBNU T.-S.You



5.4.5 BF3

- E diff. b/w bonding orbitals: e.g) single bond b/w the same atom can be diff.

C-C bond: 345 kJ/mol (avg.)

but, can be tremendously diff. for each individual bond

1) hexaphenyl ethane: (C6H5)3C-C(C6H5)3

63 kJ/mol

2) diacetylene: H-C C-C C-H

628 kJ/mol
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5.4.6 Hybrid orbitals

- hybrid orbitals, hybrids: combined AO to form MO

sets of equivalent hybrids of the central atom

: localized, directional

: point from a central atom → to surrounding atom

symm. properties → identical to the vectors used as basis sets

- methane: vectors point at the corner of tetrahedron or

a cube

generating reducible representation using four vectors

Γ = A1 + T2
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5.4.6 Hybrid orbitals

- Hybrids of methane: C’s AO used in the hybrid must have symm. matching A1 + T2

in other words: one orbital matches A1

three orbitals match T2

: A1 – totally symm. → 2s of C

T2 → three 2p orbitals (x, y, z) or dxy, dxz, dyz

much higher E
than 1s of H

∴ sp3← one s + three p

four equivalent hybrid orbitals

pointing toward each H!!
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5.4.6 Hybrid orbitals

- ammonia: sp3 hybrid (one s + three p)

: tetrahedral symm.

: ∠HNH = 106.6˚ (narrower than the predicted 109.5˚)

∵ repulsion from the lone pair

- H2O: two alternative approaches

1) tetrahedral symm. (two lone-pair + two bonds)

- sp3 hybrid

- 104.5˚ (∵ repulsion from the lone pairs)

2) bent planar symm.

- 2s, 2px, 2py are used → sp2

- 104.5˚ (∵ repulsion by one pair in an sp2 & one pair in the remaining py)
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5.4.6 Hybrid orbitals

- Fig.5.35 Hybrid orbitals
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5.4.6 Hybrid orbitals

- Example: determine the types of hybrids orbitals for boron in BF3

Step 1: determine the shape of the molecule & vectors

Step 2: determine the reducible representation & reduce it

Step 3: the AO that match the irreducible representation are those used in the

hybrid orbitals

Γ = A1’ + E’

AO in the hybrids: one orbital → A1’

two orbitals→ E’
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5.4.6 Hybrid orbitals

- AO in the hybrids: one orbital → A1’

two orbitals→ E’

from the character table

s, dz
2→ A1’

px, py, dx2-y2, dxy→ E’
d orbitals are too high in E !!

∴ s, px, py→ sp2 hybrid !!

2pz is empty → act as an acceptor !!

- hybrid approaches: deals w/ σ bonding only

then, π bonding is added

(use orbitals that do not participated in the hybridization!!)

: quicker than MO (∵ MO approach uses all AO)
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