Ch. 11. Diamagnetism and Paramagnetism

- * Magnetization: magnetic moment per unit volume of the material
- * Magnetic susceptibility (per unit volume): $x = \frac{M}{B}$ (CGS) dimensionless quantity in CGS

(in MKS
$$\chi = \frac{\mu_0 M}{B}$$
)

- $\chi > 0$: paramagnetic
- χ < 0 : diamagnetic

(e.g., superconductors)

- * Langevin diamagnetism equation
 - Diamagnetism is associated with tendency of electrical charges to shield the interior of a body from external magnetic field

(e.g., Lenz's law)

treatment of diamagnetism in atoms and ions
(& dielectric solids) employs the Larmor theorem
motion of electron under B field is a superposition of motion without B and precession with

 $\omega = \frac{eB}{2mc}$ (Larmor frequency) For free electron $\omega = \frac{\omega_c}{2}$ (ω_c : cyclotron frequency)

Paul Langevin (1872 – 1946) France Larmor precession of Z electrons is equivalent to a current

I = (charge)/(revolutions per unit time) = $(-Ze)\left(\frac{1}{2\pi}\frac{eB}{2mc}\right)$

Magnetic moment of a current loop = (current)(loop area)/c $\mu = -\frac{Ze^2B}{4mc^2} < \rho^2 >$ in CGS unit

 $\begin{array}{l} \rho: \text{loop radius perpendicular to B field} \\ <\rho^2>\ =\ <x^2>\ +\ <y^2> \end{array}$ From <r²> = <x²> + <y²> + <z²> & <x²> = <y²> = <z²> \\ <\rho^2>\ =\ \frac{2}{3}<\textbf{r}^2> \\ \rightarrow \chi=\frac{M}{B}=\frac{N\mu}{B}=-\frac{NZe^2}{6mc^2}<\textbf{r}^2> \qquad \text{N: \$\#\$ of atoms/unit volume} \\ \rightarrow \text{ diamagnetic susceptibility of dielectric solids \$\proptox <r^2>\$} \end{array}

He Ne Ar Kr Xe χ_M in CGS in 10⁻⁶ cm³/mole: -1.9 -7.2 -19.4 -28.0 -43.0

Z = 2 10 18 36 54

No water to an in the second second

Joseph Larmor (1857~1942) Ireland

* Quantum theory of diamagnetism of mononuclear system Contribution of magnetic field to the Hamiltonian

$$\mathbf{H}' = \frac{\mathrm{i}e\hbar}{2\mathrm{mc}} \left(\nabla \cdot \vec{A} + \vec{A} \cdot \nabla \right) + \frac{\mathrm{e}^2}{2\mathrm{mc}^2} \mathbf{A}^2 \tag{6}$$

(H' can be treated perturbatively for an atomic electron) In case $\vec{B} = B\hat{z}$ $(\vec{B} = \nabla \times \vec{A})$ $A_x = -\frac{1}{2}yB$, $A_y = \frac{1}{2}xB$, $A_z = 0$ Then Eq.(6) becomes $H' = \frac{ie\hbar B}{2mc} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) + \frac{e^2 B^2}{8mc^2} (x^2 + y^2)$

 1st term: proportional to orbital angular momentum (L_z) for mononuclear system, producing paramagnetism (probable for materials with unfilled p or d shells)
 2nd term: diamagnetism

$$E' = \frac{e^2 B^2}{12mc^2} < r^2 > \rightarrow \mu = -\frac{\partial E'}{\partial B} = -\frac{e^2 < r^2 >}{6mc^2} B$$

* Quantum theory of paramagnetism Magnetic moment of an atom (or ion) in free space $\vec{\mu} = \gamma \hbar \vec{J} = -g\mu_B \vec{J}$

 $\hbar \vec{j} = \hbar \vec{L} + \hbar \vec{S}$ (total angular momentum = orbital + spin) γ : ratio of magnetic moment to total angular momentum (gyromagnetic ratio)

 $g\mu_B = \gamma\hbar$ g : g-factor (= 2.0023) for electron spin μ_B : Bohr magneton $\left(=\frac{e\hbar}{2mc}\right)$ spin magnetic moment of an electron

For a free atom

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} = 2 \quad (\because L = 0 \& J = S)$$

Energy levels of the system in a magnetic field

 $U = -\vec{\mu} \cdot \vec{B} = \mu_z B = m_J g \mu_B B$

 $m_J = J, J-1, ... -J : (2J+1)$ levels

For an electron with no orbital angular momentum (L = 0),

If a system has only two levels, the equilibrium populations are $(m_J \rightarrow J)$ $x = -U/k_BT = \mu B/k_BT$ $\frac{N_1}{N} = \frac{e^x}{e^x + e^{-x}}$ $\frac{N_2}{N} = \frac{e^{-x}}{e^x + e^{-x}}$ $(\mu = Jg\mu_B = \mu_B \text{ for electron (L=0) } \because J = S = 1/2)$ $N = N_1 + N_2$ (total number of spins) The resultant magnetization (for N spins per unit volume)

$$M = (N_1 - N_2)\mu = N\mu \frac{e^x - e^{-x}}{e^x + e^{-x}} = N\mu tanh(x)$$
(17)

For x << 1, tanh(x) \approx x $\rightarrow M \approx N\mu\left(\frac{\mu B}{k_B T}\right)$ (18)

In a magnetic field, an atom with angular momentum quantum number J has (2J+1) equally spaced energy levels

$$M = NgJ\mu_B B_J(x) \qquad \left(x = \frac{1}{k_B T}\right)$$
$$B_J(x) = \frac{2J+1}{2J} \operatorname{ctnh}\left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} \operatorname{ctnh}\left(\frac{1}{2J}x\right)$$

$p \equiv g[J(J + 1)]^{1/2}$

: effective number of Bohr magnetons

- * Rare-earth ions
- usually have trivalent ions (e.g., Ce³⁺: 4f¹5s²5p⁶5d¹6s²)
 chemical properties of the ions are similar because of identical outermost electron configuration (5d¹6s²)
- ionic radius gradually contracts as number of 4f electrons increases (from 0.111 nm for Ce to 0.094 nm for Yb)
- 4f electrons are compacted in inner shell within a radius ~0.03 nm (This property is retained even in atom and solid)
- due to well-localized nature of 4f electrons, spin-orbit interaction is strong
 - → multiplet splitting in terms of total angular momentum (orbital + spin)

Fr —	Ra —	ABAC fcc 5.31	5.0	Ce fcc 5.16	Pr hex.	Nd hex	4.46	4.3	Sm complex	Eu bcc	Gi	d 1 p h	rb hcp	Dy hcp	He hc	p Er p hc	p h	m Y cp fo	b L x h	u cp 50
Сз 5к bcc 6.045	Ba bcc 5.02	La hex. 3.77	Hf hcp 3.19	Ta bo	c bo 30 3.	xc 16	Re hcp 2.76	Os hct 2.7	o foi 4 3.1	5 1 34 3	Pt oc 3.92	Au fcc 4.08	Hg	T h 3	I cp .46	Pb fcc 4.95	Bi rhomb.	Po sc 3.34	At	Rn —
Rb 5К bcc 5.585	Sr fcc 6.08	Y hcp 3.65 5.73	Zr hcp 3.23 5.19	NI bo 3.3 5	b M c bo 30 3.	lo x 15	Tc hcp 2.74 4.40	Ru hcp 2.7 4.2	Ri fo 1 3.4 8	1 5 1 80 3	Pd cc 3.89	Ag fcc 4.09	Cd hcp 2.98 5.62	li te 3	etr. .25 .95	Sn (α) diamond 6.49	Sb rhomb.	Te hex. chains	l complex (1 ₂)	Xe 48 fcc 6.13
К 5к bcc 5.225	Ca fcc 5.58	Sc hcp 3.31 5.27	Ti hcp 2.9 4.6	5 3.0 5	c br 03 2.	r cc 88	Mn cubic complex	Fe bcc 2.8	c ho 37 2. 4.	p p 51 07	Ni foc 3.52	Cu fcc 3.61	Zn hcp 2.66 4.95	G G G	ia Implex	Ge diamond 5.658	As rhomb.	Se hex. chains	Br complex (Br ₂)	Kr 48 fcc 5.64
Na 5K bcc 4.225	Mg hcp 3.21 5.21	AI Si P S Crystal structure a lattice parameter, in A c lattice parameter, in A Complex Ali Si P S complex complex												S complex	CI complex (Cl ₂)	Ar 4K fcc 5.31				
Li 78K bcc 3.491	Be hcp 2.27 3.59	Pilling of									1212			e e	l omb.	C diamond 3.567	N 208 cubic 5.66 (N ₂)	O complex (O ₂)	F	Ne 4 fcc 4.46
H ¹ 4K hcp 3.75 6.12	Ba	The s the s see V there	data ; tated Wyck 5.	given a tempe off, Vo	re at re rature l. 1, C	oom t in de hap.	emper g K. F 2. Stri	ature 'or fu actur	for the rther d es labe	e most escript led co	comr tions (mple;	s non foi of the d c are d	rm, or elemen escribe	at ts ed				10	1	He ⁴ 2 hcp 3.57 5.83