Ch. 11. Diamagnetism and Paramagnetism

- * Magnetization: magnetic moment per unit volume of the material
- * Magnetic susceptibility (per unit volume): $x = \frac{M}{R}$ (CGS) dimensionless quantity in CGS

(in MKS
$$
\chi = \frac{\mu_0 M}{B}
$$
)

- $x > 0$: paramagnetic
- $x < 0$: diamagnetic

(e.g., superconductors)

- * Langevin diamagnetism equation
	- Diamagnetism is associated with tendency of electrical charges to shield the interior of a body from external magnetic field

(e.g., Lenz's law)

- treatment of diamagnetism in atoms and ions (& dielectric solids) employs the Larmor theorem : motion of electron under B field is a superposition of motion without B and precession with

(Larmor frequency) $\omega =$ $\frac{1}{2mc}$ For free electron $\omega = \frac{\omega_c}{2}$ ($\omega_{\rm c}$: cyclotron frequency)

Paul Langevin (1872 – 1946) France

Larmor precession of Z electrons is equivalent to a current

I = (charge)/(revolutions per unit time) = $(-ze)\left(\frac{1}{2\pi}\frac{eB}{2mc}\right)$

Magnetic moment of a current loop = (current)(loop area)/ c in CGS unit $\mu = -\frac{Ze^2B}{4mc^2} < \rho^2 >$

 ρ : loop radius perpendicular to B field $<\rho^2$ = $<\chi^2$ + $<\chi^2$ > From $\langle r^2 \rangle = \langle x^2 \rangle + \langle y^2 \rangle + \langle z^2 \rangle$ & $\langle x^2 \rangle = \langle y^2 \rangle = \langle z^2 \rangle$ $<\rho^2>$ = $\frac{2}{3}<$ r² > $\Rightarrow \chi = \frac{M}{R} = \frac{N\mu}{R} = -\frac{NZe^2}{6mc^2} < r^2 > N$: # of atoms/unit volume → diamagnetic susceptibility of dielectric solids ∝ <r2>

Marko Maiständervänder He Ne Ar Kr Xe Rind San Maria (1971), 1986.
San Anggota (1971), 1986. χ_M in CGS in 10⁻⁶ cm³/mole: -1.9 -7.2 -19.4 -28.0 -43.0

Z = 2 10 18 36 54

No Engineer consideration and consideration of the second states of the sec

Joseph Larmor (1857~1942) Ireland

* Quantum theory of diamagnetism of mononuclear system Contribution of magnetic field to the Hamiltonian

$$
H' = \frac{ie\hbar}{2mc} (\nabla \cdot \vec{A} + \vec{A} \cdot \nabla) + \frac{e^2}{2mc^2} A^2
$$
 (6)

(H' can be treated perturbatively for an atomic electron) In case $\vec{B} = B\hat{z}$ $(\vec{B} = \nabla \times \vec{A})$ $A_x = -\frac{1}{2}yB$, $A_y = \frac{1}{2}xB$, $A_z = 0$

Then Eq.(6) becomes $H' = \frac{ie\hbar B}{2mc} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) + \frac{e^2 B^2}{8mc^2} (x^2 + y^2)$

1st term: proportional to orbital angular momentum (L_z) for mononuclear system, producing paramagnetism (probable for materials with unfilled p or d shells) 2 nd term: diamagnetism

$$
E' = \frac{e^2 B^2}{12mc^2} < r^2 > \quad \mu = -\frac{\partial E'}{\partial B} = -\frac{e^2 < r^2 >}{6mc^2}B
$$

* Quantum theory of paramagnetism Magnetic moment of an atom (or ion) in free space $\vec{\mu} = \gamma \hbar \vec{j} = -g \mu_{\rm R} \vec{j}$

 $\hbar \vec{l} = \hbar \vec{l} + \hbar \vec{s}$ (total angular momentum = orbital + spin) y : ratio of magnetic moment to total angular momentum (gyromagnetic ratio)

 $g\mu_B = \gamma\hbar$ g : g factor (= 2.0023) for electron spin μ_B : Bohr magneton $\left(=\frac{e\hbar}{2mc}\right)$ spin magnetic moment of an electron

For a free atom

$$
g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} = 2 \quad (\because L = 0 \& J = S)
$$

Energy levels of the system in a magnetic field

 $U = -\vec{\mu} \cdot \vec{B} = \mu_z B = m_1 g \mu_B B$

 $m_1 = J$, J-1, ... -J : (2J+1) levels

For an electron with no orbital angular momentum $(L = 0)$,

If a system has only two levels, the equilibrium populations are $(m_j \to J)$ $x = -U/k_BT = \mu B/k_BT$
 $\frac{N_1}{N} = \frac{e^x}{e^x + e^{-x}}$ $\frac{N_2}{N} = \frac{e^x + e^{-x}}{e^x + e^{-x}}$ $(\mu = Jg\mu_B = \mu_B$ for electron $(L=0)$: $J = S = 1/2$) $N = N_1 + N_2$ (total number of spins)

The resultant magnetization (for N spins per unit volume)

$$
M = (N_1 - N_2)\mu = N\mu \frac{e^x - e^{-x}}{e^x + e^{-x}} = N\mu \tanh(x)
$$
 (17)

For $x \leq 1$, tanh $(x) \approx x$ \rightarrow M \approx N $\mu \left(\frac{\mu B}{k_B T} \right)$ (18)

In a magnetic field, an atom
with angular momentum
quantum number J has $(2J+1)$ with angular momentum quantum number J has $(2J+1)$ equally spaced energy levels σ Luck \mathbf{P}

M = NgJ_{µB}B_J(x)
$$
(x = \frac{gy \mu_B B}{k_B T})
$$

B_J(x) = $\frac{2J + 1}{2J}$ ctnh $(\frac{2J + 1}{2J}x) - \frac{1}{2J}$ ctnh $(\frac{1}{2J}x)$

$p \equiv g[j(j + 1)]^{1/2}$

: effective number of Bohr magnetons

- * Rare-earth ions
- usually have trivalent ions (e.g., Ce³⁺: 4f¹5s²5p⁶5d¹6s²) : chemical properties of the ions are similar because of identical outermost electron configuration (5d¹6s²)
- ionic radius gradually contracts as number of 4f electrons increases (from 0.111 nm for Ce to 0.094 nm for Yb)
- 4f electrons are compacted in inner shell within a radius \sim 0.03 nm (This property is retained even in atom and solid)
- due to well-localized nature of 4f electrons, spin-orbit interaction is strong
	- \rightarrow multiplet splitting in terms of total angular momentum (orbital + spin)

