



# Lecture 4 The Container



#### THE CONTAINER



Section 1 Emergence of the ISO Container

Section 2 The ISO Container



#### EMERGENCE OF ISO CONTAINERS 1925 – AUSTRALIAN RAILWAYS

CAU





# EMERGENCE OF ISO CONTAINERS WORLD CONGRESS 1928



- World Congress 1928 held in Rome
  - Container Commission established
- 1933 replaced by International Container Bureau joint body of:
  - International Chamber of Commerce
  - Union of Railways (UIC)
  - Meet 4 times a year (except war years)
- Largely concerned with European railways















- 1929 began hauling rail cars by ship from the port of New York to Havana, Cuba
- 2 ships Seatrain New York and Seatrain Havana
  - Length130 m, DWT 10,500
  - Capacity of 100 railcars on 4 decks
  - Load and unload in 10 hours
- Service continued until early 1960s (ended due to USA Cuba politics)
- Sought to redeploy ships to New York to Puerto Rico but poor rail in Puerto Rico







CAIt

#### EMERGENCE OF ISO CONTAINERS +1930s UK RAILWAYS



















# EMERGENCE OF ISO CONTAINERS 1950s USA STRICK-TAINER



- 1950s first ship cargo container used in international trade
- 1960s evolved into Flexi-Van container system
  - Used by New York Central Railroad
  - Road-Rail-Unit with bottom container castings







CAIL

# EMERGENCE OF ISO CONTAINERS KOREAN WAR - CONEX



- Problem
  - Port of Pusan
  - Korean stevedores dropping and broke about 90% of crates
  - Theft and pilferage common
  - Army lost about 10% of all cargo
- CONEX Box 1952
  - Reduce port pilferage and breakage
  - Reduced transport time from 55 days to 27 days









#### EMERGENCE OF ISO CONTAINERS 1968 – LIVERPOOL TO NEW YORK

CAU





# EMERGENCE OF ISO CONTAINERS 1955 - WHITE PASS AND YUKON



- Clifford J. Rodgers
  - Purpose built continer ship (Montreal 1955)
  - 600 steel containers
    - ► 8ft by 8ft
    - ▶ 5 tons capacity
- November 26, 1955 Intermodal container system
  - North Vancouver, British Columbia to Skagway, Alaska
  - Transported on purpose built rail wagons and trucks
  - Transport north inland to the Yukon
  - Transported to consignee without opening







Containers were loaded by fask-lifts to specially designed low bed trailers for movement from Whitehorse as early as 1953.



# EMERGENCE OF ISO CONTAINERS SEALAND 1937 TO 1954



- Malcolm McLean (Scottish American) a trucker
  - Bought a second hand truck. In 1937
  - Business grew to 1800 trucks
  - Long distance trucking
- USA is a federal country each state collects its own taxes
  - Truck trailers paid a tax each time enters another state
  - A long haul could cross 12 states
  - 2 x tax payments at the border crossing
- Known for innovation and he was frustrated that
  - 1 day to unload a truck carrying breakbulk cargo
  - Dock pallets loaded one at a time and manually stowed
- 1954 designed system for loading and unloading
  - Body of truck removed from chassis and loaded on ship
  - Body of truck unloaded from ship and put on a new chassis
- Sending by ship would save
  - Taxes
  - Handling time
  - Damage and thefts





#### EMERGENCE OF ISO CONTAINERS SEALAND 1955 - MALCOM MCLEAN



- Sold trucking business for \$6 million
- Bought a shipping company
  - Pan-Atlantic Steamship Line (would become Sea-Land)
- Converted a 1944 T-2 tanker ship (Ideal X)
  - Deck added with slots to secure 58 units (35ft)
  - Also able to carry 15,000 tons of petroleum









## EMERGENCE OF ISO CONTAINERS SEALAND 1956 - MALCOM MCLEAN



- 26 April Ideal X's first sailing
- Port Newark (New Jersey) to Houston
- Deck had slots for 58 units (35ft long)
- Arrived in Houston 6 days later
  - Units unloaded onto chassis on quay
  - Existing port cranes were used
  - No handling of cargo by longshoremen (US port workers)
- Cost of stowage
  - Breakbulk ship = US\$ 5.80 per ton
  - Ideal X = US\$ 0.16 per ton
  - 36 times less











# EMERGENCE OF ISO CONTAINERS SEALAND 1957 - MALCOM MCLEAN



- Ideal X soon proved the success of the concept
- Bought World War 2 C2 type general cargo ship
  - Converted into container ships
  - Ideal X was sold (scrapped in 1964)
- Gateway City first cellular container ship
  - Length 137m
  - Beam 22m
  - Draft 7.6m
  - Speed of 15 knots
  - Capacity of 226 units (35 ft) = 395 TEU
- 5 Sister ships also converted in 1957
  - Azalea City
  - Bienville
  - Fairland
  - Raphael Semmes
  - Beauregard
- Geared cellular ships with stacked containers
- Had to use stackable containers!







# EMERGENCE OF ISO CONTAINERS SEALAND 1957 - MALCOM MCLEAN



- Crew (25)
  - 1 Captain
  - 1 Chief Engineer & 1 radioman
  - 1 Pursar
  - 6 Able-bodied & 3 ordinary seamen
  - 1 Bosun & 1 maintenance man
  - 3 Firemen & 1 wiper (engine room)
  - 1 Cook & 2 stewards
  - 3 Mates (1st, 2nd and 3rd)
- First sailing Port Newark to Miami
  - 165 units Newark to Houston
  - 61 units Newark to Miami
  - 3 units Miami to Houston
  - At Houston
    - ▶ 08:18 first unit unloaded
    - ▶ 08:20 first unit left port
    - 08:30 first unit delivered to shipper in Miami
- Regular service
  - Newark Miami Houston Tampa
  - Loading & unloading = 264 tons of cargo an hour





#### EMERGENCE OF ISO CONTAINERS SEALAND 1958 – SERVICE EXPANDED



- Sea-Land introduces container service to Puerto Rico
  - Service Newark San Juan (Puerto Rico)
  - SS Fairland







# EMERGENCE OF ISO CONTAINERS MATSON NAVIGATION - 1956



- Matson Navigation
  - 1882 first service San Francisco to Hilo (Hawaii)
  - Operated cargo ships, passengers ships and terminals
- 1956 researched introduction of containers
- 1958 Hawaiian Merchant
  - Converted a C3 type 1945 built general cargo ship
  - Carry 20 containers on deck (24ft containers)
  - Breakbulk under deck









# EMERGENCE OF ISO CONTAINERS MATSON NAVIGATION - 1958



- 31st August 1958 Hawaiian Merchant leaves (Alameda) San Francisco Bay
- Alameda Honolulu, Hawaii
- Cargo of 20 x 24 ft containers on deck





- Sea- land = 35ft long containers
- Matson = 24 ft long containers



- North America
  - Domestic trade to islands and Alaska
  - SeaTrains
    - Rail wagon load units
    - Purpose built ship
  - Conex
    - Military containers (Korean war)
  - White Pass Yukon
    - 8ft x 8ft containers
    - Purpose built ship
  - Sea-Land
    - 35ft stackable units based on bodies
    - Based on truck length
    - Converted ships
  - Matson Navigation
    - Adapted ships
    - 24 ft units suited to Hawaiian trade route
- Elsewhere
  - Range of swap body solutions
  - Based on rail wagons







- Concept had been proven
- Issues
  - Each solution was independent
    - Different dimensions
    - Similar but different lifting methods and fittings
  - No International trade had begun
  - Port infrastructure represented a challenge

















# EMERGENCE OF ISO CONTAINERS ASA – 1958 STANDARDS



- 1958 American Standards Association (ASA)
  - 2 committees held separate meetings to agree container dimension standards
  - Held in November 1958 over 2 days
  - Materials Handling 5 (MH-5)
- Membership dominated by
  - Trucking companies
  - Railroads
  - Trailer manufacturers
  - Sea-Land and Matson only shipping lines using "containers"
    - Were not part of the discussions
    - Resisted MH-5 standard
- Agreed family of acceptable standards for US domestic containers
  - 8ft width based on road regulation
    - At the time this was too wide for many European railways
  - Height maximum of 8½ ft agreed
    - Maritime members favoured 8ft
    - ► Trucking members favoured 81/2 ft
  - Agreed 3 pairs of container lengths
    - 20/40 ft (40 ft based on railway maximum)
    - 12/24 ft based on west coast USA shipping line Matson)
    - ▶ 17/35 ft based on trailer length allowed in all states

# CARE EMERGENCE OF ISO CONTAINERS NATIONAL DEFENCE TRANS ASSOC- 1959

- National Defence Transportation Association
  - A USA association of companies handling military cargo
  - Decided to study container dimensions
  - No shipping companies were members
- 1959 it had agreed standard containers
  - 20 ft and 40 ft long
  - 8 ft wide
  - 8 ft high
  - Would not accept for military cargo
    - ► ASA standards of 81/2 high or different lengths
- US military cargo
  - Very valuable source of revenue for transport companies
  - Domestic movements
  - Overseas USA military bases



#### EMERGENCE OF ISO CONTAINERS 1961 - VIETNAM WAR









- April 1963 compromise agreed
- There were issues over transport modes
  - Railway infrastructure tunnels, wagons etc
  - Road networks national regulations on truck sizes
  - Ports ability to handle container dimensions and fittings
  - Ships container ships were already built for different sizes
- There were issues of the container design
  - There was a growing number of containers
    - Railways
    - Shipping companies
    - Trucking companies
  - They had
    - Different sizes
    - Different strengths
    - Different methods of lifting
    - Different stacking limits
- Many countries involved
  - European, British, North American, Japan



#### EMERGENCE OF ISO CONTAINERS 1966 EXPERIMENT TILBURY LONDON







## EMERGENCE OF ISO CONTAINERS 1967 - SEATRAIN LINES



- Converted 2 x T2 tanker ships
- Newark-Puerto Rico service
- Converted T2 tankers and C2 ships to carry containers
- Length 165m
- Under deck carried rail and lorries
- 2 x 50 ton cranes to unload under deck cargo
- Used 40ft container units











- Non-governmental organisation (NGO)
  - Based in Switzerland
  - Produces voluntary industry standards (not just transport)
  - Established in 1947
  - "To promote the development of standardization and related activities in the world with a view to facilitating the international exchange of goods and services, and to developing cooperation in the spheres of intellectual, scientific, technological and economic activity."
- During the 1960s ISO sought to develop global standards for containers



International Organization for Standardization



# EMERGENCE OF ISO CONTAINERS ISO STANDARDS – TC 104



- 1968 standards issued
- Today 3 standards + 1 underdevelopment
  - TC 104/SC 1 General purpose containers
  - TC 104/SC 2 Specific purpose containers
  - TC 104/SC 4 Identification and communication#
  - Under development: Freight containers -- Mechanical seals
- 28 participating countries and 24 observing countries
- Liaises with
  - United Nations bodies eg
    - International Labour Organization (ILO)
    - International Maritime Organization (IMO)
  - Non-governmental organizations (NGOs) eg
    - ICHCA International
    - International Container Bureau (ICB)
    - International Chamber of Shipping (ICS)
  - International governmental organizations (IGOs) eg
    - World Customs Organization
    - European Commission
  - Trade associations eg
    - Asian Packing Federation (APF)







International Organization for Standardization



## EMERGENCE OF ISO CONTAINERS OPEN TECHNOLOGY







#### EMERGENCE OF ISO CONTAINERS OPEN TECHNOLOGY







#### EMERGENCE OF ISO CONTAINERS STRENGTH OF CONTAINERS







#### THE CONTAINER



Section 1 Emergence of the ISO Container

Section 2 The ISO Container



#### THE ISO CONTAINER ISO 668:1995 – DIMENSIONS



- ISO 668:1995 Classification, dimensions and ratings
  - Amd 1:2005 updates including structures and goosenecks
  - Amd 2:2005 45 containers
- Dimensions
  - External ± tolerances
  - Minimum internal
  - Minimum door opening
- Locations of corner fittings
- Load bearing structures
  - Locations
  - Strengths



Figure B.6 — 1AA, 1A or 1AX containers without gooseneck tunnel — Minimum requirements

Table 2 — External dimensions, permissible tolerances and ratings for series 1 freight containers

| Freicht                             | freight container<br>Length, L Width, W |           |          |        |                  |       |     |             |             | Height, H Rating, S <sup>4</sup> |          |     |                   |            |                     |              |  |
|-------------------------------------|-----------------------------------------|-----------|----------|--------|------------------|-------|-----|-------------|-------------|----------------------------------|----------|-----|-------------------|------------|---------------------|--------------|--|
| Freight<br>container<br>designation | 1 11                                    |           | nagta, w |        | 102              | 101   |     | tol.   tol. |             | 101                              |          |     |                   | 100        |                     | (gross mass) |  |
|                                     | 83                                      |           | ft in    |        | in               |       |     | ñ           | in          |                                  | 8        | £.  | in                | in         | kg                  | ъ            |  |
| 🕞 1EEE                              | 13 7164                                 | 0         | 45       |        | 0                | 2 438 | ġ   | 8           | 0           | 2 896*                           | - 5      | 9   | ø                 | 0<br>-3/16 | 30 480*             | 67 200       |  |
| 1EE                                 | 10 /10                                  | - 10      |          |        | -3/8             |       | - 5 | Ť           | - 3/16      | 2 591 <b>°</b>                   | - 5      | 8   | 64                | 0<br>-3/16 | 00 400              | 6.100        |  |
| 1AAA                                |                                         |           |          |        |                  |       |     |             |             | 2 896 <sup>a</sup>               | - 5      | 9   | ø                 | 0<br>-3/16 |                     |              |  |
| 1AA                                 | 12 192                                  | - 10      | 40       |        | 0<br>-3/8        | 2 438 | - 5 | 8           | - 3/26      | 2 591 <b>°</b>                   | - 5      | 8   | ${\mathfrak G}^h$ | 0<br>-3/16 | 30 480°             | 67 200       |  |
| 1A                                  |                                         |           |          |        |                  |       |     |             |             | 2 438                            | 0<br>- 5 | 8   |                   | 0<br>-3/16 |                     |              |  |
| 1AX                                 |                                         |           |          |        |                  |       |     |             |             | < 2 438                          |          | < 8 |                   |            |                     |              |  |
| 1BBB                                | 9 125                                   | 0<br>- 10 | 29       | 11 1/4 | -<br>-<br>-<br>- | 2 438 | - 0 | 8           | 0<br>- 3/16 | 2 896 <sup>%</sup>               | - 5      | 9   | $Q_{\mu}$         | _3/16      |                     |              |  |
| 1BB                                 |                                         |           |          |        |                  |       |     |             |             | 2 591*                           | - 5      | 8   | 64                | 0<br>-3/16 |                     |              |  |
| 1B                                  |                                         |           |          |        |                  |       |     |             |             | 2 438                            | - 5      | 8   |                   | 0<br>-3/16 |                     |              |  |
| 1BX                                 |                                         |           |          |        |                  |       |     |             |             | < 2 438                          |          | < 8 |                   |            | 30 480 <sup>*</sup> |              |  |
| 1CC                                 |                                         |           |          |        |                  |       |     |             |             | 2 591°                           | - 5      | 8   | 64                | -3/16      |                     | 9            |  |
| 1C                                  | 6 058                                   | - 6       | 19       | 10 1/2 | 0<br>-1/4        | 2 438 | - 5 | 8           | 0<br>- 3/16 | 2 438                            | - 5      | 8   |                   | 0<br>-3/16 |                     |              |  |
| 1CX                                 |                                         |           |          |        |                  |       |     |             |             | < 2 438                          |          | < 8 |                   |            |                     |              |  |
| 1D                                  | 2 991                                   | - 5       | 9        | 9 3/4  | 0<br>-3/16       | 2 438 | - 5 | 8           | 0           | 2 438                            | - 5      | 8   |                   | 0<br>-3/16 | 10 160              | 22 400       |  |
| 1DX                                 |                                         |           |          |        |                  |       |     |             | - 2/10      | < 2 438                          |          | < 8 | 1                 |            |                     |              |  |

<sup>b</sup> In certain countries there are legal limitations to the overall height of vehicle and load (for example for rail/toad service).



## THE ISO CONTAINER ISO 830: 1999 - VOCABULARY



- ISO 830:1999 Vocabulary
  - Cor 1:2001
- Definitions
  - Container types
  - Related to dimensions and capacities
  - Related to ratings and masses
  - Components and structures
  - Handing and securing
  - Visual identification





#### THE ISO CONTAINER ISO 1161: 1984 – CORNER FITTING





# THE ISO CONTAINER ISO 1496:1990 – SPECIFICATIONS



- ISO 1496 Specification and testing
  - -1:1990 General cargo containers for general purposes
    - Amd 1:1993
    - Amd 2:1998
    - Amd 3:2005
    - Amd 4:2006
    - Amd 5:2006 Door end security
  - -2:2008 Thermal containers
  - -3:1995 Tank containers for liquids, gases and pressurized dry bulk
    - Amd 1:2006 Testing of the external restraint (longitudinal) dynamic
  - -4:1991 Non pressurized containers for dry bulk
    - Amd 1:1994 1AAA and 1BBB containers
    - ► Cor 1:2006
  - -5:1991 Platform and platform-based containers
    - Amd 1:1993 1AAA and 1BBB containers
    - Amd 2:1994
- Contents
  - Dimensions, ratings and design
  - Testing
  - Diagrammatic representation of capabilities
  - Dimensions of fork-lift pockets
  - Cargo securing systems



#### THE ISO CONTAINER ISO 1496: 1990 - TESTING



#### General container type tests Test 1: Stacking ■ Test 2: Lifting from the four top corner fittings Test 3: Lifting from the four bottom corner fitting Test 4: Restraint (longitudinal) 2Rq Test 5: Strength of end walls Test 6: Strength of side walls 2R-1 Test 7: Strength of the roof ■ Test 8: Floor strength Test 9: Rigidity (transverse) Test 10: Rigidity (longitudinal) Test 11: Lifting by fork-lift pockets 2 sin θ Test 13: Weatherproofness 2R Thermal container tests Test No. 8

- Tank container tests
  - Pressurized
  - Non-pressurized
- Platform container tests
- Internal cargo securing components

#### Table 3 - Forces to be applied in stacking test

| 1 | Container designation                                                                   | Text fares per container<br>(all four corners<br>emoltaneously) |                                                     | Tee faces per pair<br>of end fittings |                                                     | Superimproved mass<br>represented by lost force |                                             |
|---|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|-----------------------------------------------------|-------------------------------------------------|---------------------------------------------|
| ł |                                                                                         | 101                                                             | - M                                                 | - 10                                  | M                                                   | he .                                            | - B-                                        |
| 1 | [5] 1A. 1AA. 1AAA and 1AX<br>1B. 1BB. 1BBB and 1BX (3)<br>1C, 1CC and 1CX<br>1D and 1DX | 0 3 101<br>3 101<br>3 101 ()<br>3 101 ()                        | 242 550<br>242 550<br>242 550<br>242 550<br>241 600 | () 1 863<br>1 863<br>1 863 ()<br>448  | 343 275<br>343 275<br>345 275<br>365 275<br>300 800 | 59 213 360<br>213 360<br>213 360 6<br>50 800    | 470 380  470 380  470 380  470 380  112 000 |









#### THE ISO CONTAINER ISO 2308: 1972 – HANDLING



■ ISO 2308:1972 Hooks for lifting freight containers of up to 30 tons capacity





### THE ISO CONTAINER ISO 3874: 1997 - HANDLING



- ISO 3874:1997 Handling and securing
  - Amd 1:2000 Twistlocks, latchlocks, stacking fittings and lashing rod systems
  - Amd 2:2002 Vertical tandem lifting
  - Amd 3:2005 Double stack rail car operations
  - Amd 4:2007 45 ft containers
- Contents
  - Packing, loading and emptying
  - Stowage and securing cargo
  - Lifting methods
  - Top lift spreaders
  - Top lift sling
  - Botton lift sling
  - Side lift (methods 1, 2 and 3)
  - End lift (methods 1 and 2)
  - Fork lifts
  - Landing and supporting
  - Stacking on the ground (including wind speed)
  - Securing during transport (ship, road, rail)
  - Twistlocks (dimensions, strength and testing)
  - Latchlocks (dimensions, strength and testing)
  - Stacking fittings (dimensions, strength and testing)
  - Lashing rods (dimensions, strength and testing)







#### THE ISO CONTAINER ISO 3874: 1997 - HANDLING





Figure 17 — Racking, tipping and sliding



Figure 18 - Compression and collapse



it: Salud of second Writing



Figure 34 - Transcription reache with relation depends



### THE ISO CONTAINER ISO 6346: 1995 – CODING, ID, MARKS



- ISO 6346:1995 Coding, identification and marking
- Visual identification system for every container
- Unique container code
  - Owner 3 letter alpha code (1700+ owners globally)
  - Equipment category 1 letter alpha code
    - ► U = container
    - J = detachable equipment for containers
    - Z = trailer or chassis for containers
  - Serial number 7 digits (includes check digit)
- Country code (optional)
- Size & type (since 1996)
- Operational marks
  - Air surface container
  - Overhead electrical danager
  - Height max
- Managed by the International Container Bureau (BIC) - www.bic-code.org











# BSIU2253788

| prefix     | sit | name        | origin                      | owner                                     |
|------------|-----|-------------|-----------------------------|-------------------------------------------|
| BRUU t btc |     | BN          | Brunel Transporting Company |                                           |
| BSBU       | I.  | bigsteelbox | CA                          | Big Steel Box Itd.                        |
| BSCU       | 5   | bsc         | RU                          | Baltic Shipping Company                   |
| BSGU       | 5   |             | UA                          | Black Sea Shipping Service Itd.           |
| BSHU       | \$  |             | IN                          | Best Express Shipping Transport pvt. ltd. |
| BSIU       | 1   | blue sky    | GB                          | Blue Sky Intermodal ( uk ) ltd.           |
| BSLU       | 5   |             | GB                          | A.P. MollerMaersk Group                   |
| BSLU       | 0   |             | нк                          | BSL Containers                            |
| BSMU       | t   | brian smith | GB                          | E.E. & Brian Smith                        |
| BSTU       | I.  | best        | NL                          | Best Containers Purmerend by.             |
| BSWU       | 0   | bison       | GB                          | Bison Concrete Products Itd.              |
| BTCU       | t   |             |                             | Bulkmatic Transport co                    |
| BTEU       | t   | bruhn       | DE                          | Bruhn Spedition                           |
| BTIU       |     |             | FR                          | Interarmees commissariat                  |

#### www.prefixlist.com

### CARE THE ISO CONTAINER ISO 6346: 1995 – CONTAINER LENGTH







First character = length Second character =width and height Third and fourth character = type



First Character1 = 10 feetG = 41 feet2 = 20 feetH = 43 feet3 = 30 feetL = 45 feet4 = 40 feetM = 48 feetB = 24 feetN = 49 feetC = 24 feet 6 inch

#### THE ISO CONTAINER ISO 6346: 1995 – WIDTH & HEIGHT





CAIL



First character = length Second character =width and height Third and fourth character = type



| 2nd Character code |         |    |                 |                |          |  |  |  |
|--------------------|---------|----|-----------------|----------------|----------|--|--|--|
| Contain            | er heig | ht | Container width |                |          |  |  |  |
|                    |         |    |                 | >2438 mm       |          |  |  |  |
|                    |         |    | 2438 mm         | and            |          |  |  |  |
| mm                 | ft      | in | (8ft)           | $\leq$ 2500 mm | >2500 mm |  |  |  |
| 2438               | 8       |    | 0               |                |          |  |  |  |
| 2591               | 8       | 6  | 2               | С              | L        |  |  |  |
| 2743               | 9       |    | 4               | D              | м        |  |  |  |
| 2895               | 9       | 6  | 5               | E              | N        |  |  |  |
| >2895              | >9      | 6  | 6               | F              | Р        |  |  |  |
| 1295               | 4       | 3  | 8               |                |          |  |  |  |
| ≤1219              | ⊴4      |    | 9               |                |          |  |  |  |



### THE ISO CONTAINER ISO 6346: 1995 – TYPE (Gx)





First character = length Second character =width and height Third and fourth character = type

#### **General purpose container**

- G0 Opening(s) at one end or both ends
- G1 Passive vents at upper part of cargo space
- G2 Opening(s) one or both ends plus full opening(s) on one or both sides
- G3 Opening(s) one or both ends plus partial opening(s) on one or both sides





### THE ISO CONTAINER ISO 6346: 1995 – TYPE (Vx)





First character = length Second character =width and height Third and fourth character = type

#### General container with ventilation

- V0 Non-mechanical system, vents at lower and upper part
- V2 Mechanical ventilation system, located internally
- V4 Mechanical ventilation system, located externally







CAU

### THE ISO CONTAINER ISO 6346: 1995 – TYPE (Bx)





First character = length Second character =width and height Third and fourth character = type

#### Dry bulk container

- B0 Nonpresurized, box type, closed
- B1 Nonpresurized, box type, airtight
- B3 Pressurized, horizontal discharge, test pressure 150kPa1
- B4 Pressurized, horizontal discharge, test pressure 265kPa
- B5 Pressurized, tipping discharge, test pressure 150 kPa
- B6 Pressurized, tipping discharge, test pressure 265kPa







### THE ISO CONTAINER ISO 6346: 1995 - TYPE (Sx)





First character = length Second character =width and height Third and fourth character = type

#### Named cargo container

- **S**0 Livestock carrier S1
- Automobile carrier
- S2 Live fish carrier











### THE ISO CONTAINER ISO 6346: 1995 – TYPE (Rx & Hx)



First character = length Second character =width and height Third and fourth character = type

#### **Thermal container**

- RO Refrigerated, mechanically refrigerated
- RT Refrigerated and heated, mechanically refrigerated and heated
- R2 Self-powered refrigerated/heated, mechanically refrigerated
- R3 Mechanically refrigerated and heated

#### **Thermal container**

- HO Refrigerated and/or heated, with removable equipment located externally; heat transfer coefficient K=0,4W/(m2\*K)
- H1 Refrigerated and/or heated with removable equipment located internally
- H2 Refrigerated and/or heated with removable equipment located externally; heat transfer coefficient K = 0.7W/(m2\*K)
- H5 Insulated; heat transfer coefficient K = 0.4W/(m2\*K)
- H6 Insulated; heat transfer coefficient K= 0,7W/(m2\*K)









## THE ISO CONTAINER ISO 6346: 1995 – TYPE (Ux)





First character = length Second character =width and height Third and fourth character = type

#### **Open-top container**

- U0 Opening(s) at one or both ends
- U1 Opening(s) at one or both ends, removable top member(s) in end frame(s)
- U2 Opening(s) at one or both ends, plus opening(s) on one or both sides
- U3 Opening(s) at one or both ends, plus opening(s) on one or both sides plus removable top member(s) in end frame(s)
- U4 Opening(s) at one or both ends, plus partial opening on one side and full opening on the other side
- U5 Complete, fixed side and end walls (no doors)





## THE ISO CONTAINER ISO 6346: 1995 – TYPE (Px)





First character = length Second character =width and height Third and fourth character = type



#### Platform (container)

- P0 Platform (container)
- P1 Fixed, two complete and fixed ends
- P2 Fixed, fixed posts, either free-standing or with removable top member
- P3 Folding (collapsible), folding complete end structure
- P4 Folding (collapsible), Folding posts, either free-standing or with removable top member

MAERSK -







### THE ISO CONTAINER ISO 6346: 1995 – TYPE (Tx)





First character = length Second character =width and height Third and fourth character = type

#### **Tank container**

- T0 For non dangerous liquids, minimum pressure 45kPa T0
- T1 For non dangerous liquids, minimum pressure 150kPa TI
- T2 For non dangerous liquids, minimum pressure 265kPa T2
- T3 For dangerous liquids, minimum pressure 150kPa T3
- T4 For dangerous liquids, minimum pressure 265kPa T4
- T5 For dangerous liquids, minimum pressure 40kPa T5
- T6 For dangerous liquids, minimum pressure 60kPa T6
- T7 For gases, minimum pressure 910kPa T7
- T8 For gases, minimum pressure 220 kPa T8
- T9 For gases, minimum pressure (to be decided) T9









### THE ISO CONTAINER OTHER ISO AGREEMENTS



- ISO 8323:1985 Air/surface (intermodal) general purpose containers Specification and tests
- ISO 9669:1990 Interface connections for tank containers
  - Amd 1:1992 Sections 3 and 4
- ISO 9711 Information related to containers on board vessels
  - Part 1 Bay Plan System
  - Part 2 Telex data transmission
- ISO 9897:1997 Container equipment data exchange (CEDEX)
  Cor 1:2001
- ISO 10368:2006 Remote condition monitoring
- ISO 10374:1991 Freight automatic identification
  - Amd 1:1995
- ISO 17363:2007 Supply chain applications of RFID
- ISO 18185-1:2007 Electronic seals
  - Part 1: Communication protocol
  - Part 2: Application requirements
  - Part 3: Environmental characteristics
  - Part 4: Data Protection
  - Part 5: Physical layer



## THE ISO CONTAINER IMO - CSC 1977



- 1972 Convention for Safe Containers (into force 1977) has two goals.
  - Safety in container transport & handling test procedures & strength requirements.
  - Facilitate international container transport uniform international safety regulations.
- Annex I
  - Regulations for container testing, inspection, approval and maintenance.
  - Approval authorized body (safety approval plate)
- Annex II
  - Structural safety requirements and tests for inland and maritime transport
  - subsequent maintenance of a safety-approved container responsibility of owner
- 1983 amendments (into force in 1984)
  - Extended interval between re-examination to 30 months (allow periodic examination)
- 1991 amendments (into force in 1993)
  - Included addition new Chapter concerning approval of modified containers.
- 1993 amendments (requires ratification)
  - Concern information on approval plate and amends some test loads and procedures





## THE ISO CONTAINER STACKING & MAINTENANCE



- Standard container
  - Max gross weight of about 30 metric tonnes
  - Corner posts designed for 190 metric tonnes load under G force of 1.8
  - Bottom container can support 6 containers
  - Stack height of 7 fully loaded containers
- Container structural inspections
  - Once container is 5 years old
  - Every 3 years after
- IMO report on inspections performed between 1996 and 2002
  - 19,704 containers inspected
  - 1,737 (approximately 9%) had structural deficiencies.





