Microelectronic Circuits I

Ch 5 MOS Field-Effect Transistors (MOSFETs)

5.1 Device Structure and Physical Operation5.2 Current – Voltage Characteristics

MOSFET vs. Diode

	MOSFET	Diode
Terminal	Three terminal device: use of the voltage between 2 terminals to control the current in the 3 rd terminal → controlled source, switch	Two terminal : Uncontrolled switch
Merits	 Smaller size Simple manufacturing process Little power → VLSI (2 billion) 	
Applications	 Amplification Microprocessor, Memory chips Digital logic, Analog ICs mixed-signal chip 	•Rectifier

*MOSFET: Metal-Oxide-Semiconductor Field Effect Transistor

 \rightarrow the most widely used electronic devices

Device structure and Physical Operation

n-channel *enhancement*-type MOSFET

S Metal Gate (G) Source (S) Drain (D) Oxide (SiO₂) Metal Oxide (SiO₂) (thickness $= t_{or})$ Source region Channel region *p*-type substrate p-type substrate (Body) (Body) Channel region Body length $L: 0.03 \sim 1 \mu m$ Drain region (B) width $W: 0.1 \sim 100 \mu m$ (a) (b)

- *p*-type substrate : physical support for the devices \rightarrow body
- heavily doped *n*-type n⁺ silicon : n⁺ source & n⁺ drain
- thin layer of silicon dioxide (SiO₂: t_{ox} = 1~10 nm) : electrical insulator \rightarrow insulated-gate FET
- Metal deposited on top of the oxide layer : gate electrode → Metal-Oxide-Semiconductor FET
- 4 terminals : gate (G), source (S), drain (D) and substrate or body (B)
 - \rightarrow connecting B to S : 3 terminals [G, S, D]
- symmetrical device : a voltage at Gate controls current flow between Drain and Source *CNU EE*

Operation of MOSFET

• Operation with No Gate Voltage

When $v_{GS} = 0, v_{DS} > 0$

- *Body* is connected to *source*. (3-terminal)
- Two pn junctions (substrate-drain & substrate-source) are cut-off. (I = 0)
- Path between D & S: very high resistance (of the order of $10^{12} \Omega$)

Two back-to-back diodes prevent current conduction from drain to source when v_{DS} is applied

Creating a Channel for Current Flow

• When $v_{GS} > 0$, $v_{DS} = 0$ (Source, Drain & Body are grounded)

• *Mechanism for Channel induction:*

- − $v_{GS} > 0$ → Holes at the channel region are pushed downward into the substrate.
- A carrier depletion region at the channel region \rightarrow uncovered negative charges
- v_{GS} attracts electrons from n^+ source & n^+ drain into the channel region.
 - \rightarrow *n* region connecting *S* and *D* is in effect created
 - \rightarrow if $v_{DS} > 0$, current flows through this induces *n* region
- The induced *n* region forms a channel for current flow from drain to source
 → *n*-channel MOSFET or NMOS transistor
- Channel : inverts the substrate surface from *p* type to *n* type \rightarrow inversion layer

Creating a Channel for Current Flow

• Threshold voltage $V_t (0.3 \sim 1 \text{ V})$:

 v_{GS} at which a sufficient number of mobile electrons accumulate in the channel region to form a conducting channel.

- Parallel plate capacitor :
- oxide layer : dielectric, gate : positive plate, induced channel : negative plate
- Electric field \rightarrow controls the amount of charge in the channel \rightarrow channel conductivity
 - \rightarrow current flowing through the channel when v_{DS} is applied
 - \rightarrow field-effect transistor (FET)

Creating a Channel for Current Flow

- The voltage across the parallel-plate capacitor must exceed V_t for a channel to form
- When $v_{DS} = 0$, voltage across the oxide is uniform & equal to v_{GS}
- Overdrive voltage or effective voltage : excess of v_{GS} over V_t

$$V_{GS} - V_t \equiv V_{OV}$$

- Electron charge in the channel

$$\left|Q\right| = C_{ox} (WL) v_{OV}$$

- Oxide capacitance C_{ox} : capacitance of the parallel-plate capacitor per unit gate area (F/m²) $C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$ $\varepsilon_{ox} = 3.9 \varepsilon_0 = 3.9 \times 8.954 \times 10^{-12} = 3.24 \times 10^{-11} \text{ F/m} : permittivity of SiO_2$ $C_{ox} = 8.6 \times 10^{-3} \text{ F/m}^2 @ t_{ox} = 4 \text{ nm}$ $C = C_{ox} WL = 1.1 f \text{F} @ L = 0.18 \mu \text{m}, W = 0.72 \mu \text{m}, f \text{P} : \text{femptofarad}(10^{-15} \text{ F})$
- as v_{GS} increases, the magnitude of channel charge increases proportionately
 - \rightarrow increase in the depth of the channel
- The larger the overdrive voltage v_{OV} , the deeper the channel

Applying a Small *v*_{DS}

• When a small positive v_{DS} is applied. ($v_{DS} \sim 50 \text{mV}$)

The voltage v_{DS} causes a current i_D to flow through the induced *n* channel

Applying a Small v_{DS}

- i_D current flow:
 - Current is carried by free electrons traveling from *source* to *drain* → the reason for *source* and *drain*
 - The direction of current i_D flow : from *drain* to *source*
 - The magnitude of *i_D* depends the *density of electrons* in the channel
 → depends on the magnitude of *v_{GS}*
- excess gate voltage (= v_{GS} V_t), Effective voltage or overdrive voltage :
 - As v_{GS} exceeds V_t , more electrons attracted into the channel
 - : the increase in charge carriers in the channel
 - → increase in the channel depth, increased channel conductance, reduced channel resistance

Applying a Small v_{DS}

- i_D calculation
- small $v_{DS} \rightarrow$ voltage between G & channel is remains constant & equal to v_{GS} \rightarrow effective voltage between G & channel = v_{OV}
- $\frac{|Q|}{unit \ channel \ length} = \frac{C_{ox}Wv_{OV}}{|E| = \frac{v_{DS}}{L}}$ - charge per unit channel length :
- Electric field *E* across the length of the channel by v_{DS} : Electron drift velocity = $\mu_n |E| = \mu_n (v_{DS}/L)$ μ_n : electron mobility
- i_D by multiplying the charge per unit channel length by electron drift velocity

$$i_{D} = \left[\left(\mu_{n} C_{ox} \left(\frac{W}{L} \right) v_{OV} \right] v_{DS} = \left[\left(\mu_{n} C_{ox} \left(\frac{W}{L} \right) (v_{GS} - V_{t}) \right] v_{DS} \right]$$

- Conductance g_{DS} of the channel

$$g_{DS} = \left(\mu_n C_{ox}\right) \left(\frac{W}{L}\right) v_{OV} = \left(\mu_n C_{ox}\right) \left(\frac{W}{L}\right) \left(v_{GS} - V_t\right)$$

- Conductance g_{DS} : product of $(\mu_n C_{ox}), (W/L), v_{OV} (= v_{GS} - V_t)$

Applying a Small *v*_{DS}

- Conductance g_{DS} : product of $(\mu_n C_{ox})$, (W/L), v_{OV} (= v_{GS} - V_t)
- $k_n^{\prime} = \mu_n C_{ox}$: process transconductance parameter [A/V²]
- aspect ratio (*W/L*) : minimum channel length (2009) ~ 45 nm, t_{ox} ~ 1.4nm
- MOSFET transconductance parameter k_n [A/V²]:

$$k_n = k_n^{\prime} (W/L) = (\mu_n C_{ox}) (W/L)$$

- overdrive voltage $v_{OV} = v_{GS} V_t$
- With v_{DS} kept small, MOSFET behaves as a linear resistance r_{DS} controlled by v_{GS}

$$r_{DS} = \frac{1}{g_{DS}} = \frac{1}{(\mu_n C_{ox})(W/L)} = \frac{1}{(\mu_n C_{ox})(W/L)(v_{GS} - V_t)}$$

• i_D when v_{DS} is small (~ 50mV)

$$i_D = k_n^{/} \left(\frac{W}{L}\right) v_{OV} v_{DS}$$

Applying a Small v_{DS}

• MOSFET device is operating as a linear resistance whose value is controlled by v_{GS} when v_{DS} is kept small

Enhancement-mode operation (enhancement-type MOSFET): increasing v_{GS} above the threshold voltage V_t enhances the channel.

Operation as *v*_{DS} **is Increased**

When v_{DS} increases with $v_{GS} > V_t$ & kept constant.

- v_{DS} appears as a voltage drop across the length of channel
- the voltage increases from 0 to v_{DS} along the channel from *Source* to *Drain*
- the voltage between the *Gate* and points along the channel decreases from

 $v_{GS} = V_t + V_{OV}$ at S to $v_{GD} = v_{GS} - v_{DS} = V_t + V_{OV} - v_{DS}$ at D

- channel depth ∞ the above voltage difference
 - \rightarrow The induced channel has a tapered shape, deepest at *S* & shallowest at *D*
 - \rightarrow its resistance increases as v_{DS} is increased

Operation as *v*_{DS} **is Increased**

Figure 5.6(a) For a MOSFET with $v_{GS} = V_t + V_{OV}$, application of v_{DS} causes the voltage drop along the channel to vary linearly, with an average value of $\frac{1}{2}v_{DS}$ at the midpoint. Since $v_{GD} > V_t$, the channel still exists at the drain end. (b) The channel shape corresponding to the situation in (a). While the depth of the channel at the source end is still proportional to V_{OV} , that at the drain end is proporational to $(V_{OV} - v_{DS})$.

Operation as *v*_{DS} **is Increased**

As v_{DS} is increased, the channel becomes more tapered and its resistance increases $i_D - v_{DS}$ curve does not continuous as a straight line but bends, as v_{DS} is increased \rightarrow semiparabolic portion of $i_D - v_{DS}$ curve As v_{DS} is reduced, we can neglect $1/2v_{DS}$ relative to V_{OV} $i_D = k_n^{\prime} \left(\frac{W}{L}\right) \left(V_{OV} - \frac{1}{2}v_{DS}\right) v_{DS} \triangleright i_D = k_n^{\prime} \left(\frac{W}{L}\right) V_{OV} v_{DS}$ (a) small v_{DS} i_D – Triode → Saturation $(v_{DS} \leq V_{OV})$ $(v_{DS} \ge V_{OV})$ Curve bends because Current saturates because the the channel resistance channel is pinched off at the increases with v_{DS} drain end, and v_{DS} no longer affects the channel. Almost a straight line with slope proportional to Vov $v_{GS} = V_t + V_{OV}$ $V_{DS\,\text{sat}} = V_{OV}$ 0 v_{DS}

Operation for $v_{DS} >> V_{OV}$

- Increasing v_{DS} causes the channel to acquire a tapered shape
- As v_{DS} reaches $V_{OV} (= v_{GS} V_t)$, the channel is pinched off at the drain end **Pinch-off** : the disappearance of the conducting channel adjacent to the drain
- Increasing v_{DS} above $v_{GS} V_t$ (= V_{OV}) has little effect on the channel's shape & charge
 - \rightarrow current through the channel remains constant at the value @ $v_{DS} = V_{OV}$
 - → The current thus **saturates**

Operation for $v_{DS} >> V_{OV}$

- Channel pinch-off does *not* mean channel blockage
- Any increase in v_{DS} above V_{DSsat} (=V_{OV}) appears as a voltage drop across the depletion region
- Both the current through the channel and the voltage drop across it remains constant in saturation

Figure 5.8 Operation of MOSFET with $v_{GS} = V_t + V_{OV}$, as v_{DS} is increased to V_{OV} . At the drain end, v_{GD} decreases to V_t and the channel depth at the drain end reduces to zero (pinch off). At this point, the MOSFET enters the saturation mode of operation. Further increasing v_{DS} (beyond $V_{DSat} = V_{OV}$) has no effect on the channel shape and i_D remains constant.

Operation for $v_{DS} >> V_{OV}$

Current through the channel saturates at the value for $v_{DS} = V_{OV} \rightarrow$ saturation region

$$i_{D} = k_{n}^{\prime} \left(\frac{W}{L}\right) \frac{1}{2} V_{OV} V_{DSsat} = \frac{1}{2} k_{n}^{\prime} \left(\frac{W}{L}\right) (v_{GS} - V_{t})^{2}$$

$$V_{DSsat} = V_{OV} = V_{GS} - V_t$$

→ In saturation region, i_D remains constant for a given v_{GS} as v_{DS} is varied → $i_D - v_{DS}$ curve is a horizontal straight line as shown in ppt 15

• $i_D - v_{DS}$ relationship

$$i_{D} = k'_{n} \left(\frac{W}{L}\right) \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$
$$i_{D} = \frac{1}{2} k'_{n} \left(\frac{W}{L}\right) (v_{GS} - V_{t})^{2} = \frac{1}{2} k'_{n} \left(\frac{W}{L}\right) v_{OV}^{2}$$

triode region (continuous channel)

saturation region (pinch-off channel)

The *p*-Channel MOSFET (PMOS)

- *p*-channel enhancement-type
 MOSFET (PMOS transistor)
- *n*-type substrate
- *p*⁺ region : drain & source → charge carrier is *hole*
- v_{GS} , v_{DS} & $V_t < 0$
- induced *p*-channel

$$v_{GS} \le V_{tp} \qquad \left| v_{GS} \right| \ge \left| V_{tp} \right|$$

- *i*_D flows through the channel from the *source* to *drain* by a negative *v*_{DS}
- Process transconductance parameter

 $k_p' = \mu_p C_{ox} \quad \mu_p = 0.25 \sim 0.5 \mu_n$

- Transistor transconductance parameter

 $k_p = k_p^{\prime} (W/L)$

- Electron mobility μ_n is higher than a factor of 2 to 4 than hole mobility μ_p

 \rightarrow NMOS speed > PMOS speed

Complementary MOS or CMOS

- CMOS: NMOS + PMOS
- The most widely used of all the IC technologies
- PMOS is formed in a separated *n*-type region, known as an *n well*
- NMOS & PMOS are isolated by a thick region of *oxide* that function as an insulator

Current – Voltage Characteristics

Circuit symbol of *n*-channel enhancement-type MOSFET

(a) Circuit symbol for the *n*-channel enhancement-type MOSFET. (b) Modified circuit symbol with an arrowhead on the source terminal to distinguish it from the drain and to indicate device polarity (i.e., *n* channel). (c) Simplified circuit symbol to be used when the source is connected to the body or when the effect of the body on device operation is unimportant.

The drain is always positive relative to the source in an n-channel FET
arrowhead : normal direction of current flow

$i_D - v_{DS}$ Characteristics

NMOS $i_D - v_{DS}$ Characteristics

$i_D - v_{DS}$ Characteristics

- v_{GS} above V_{tn} by V_{OVI} , V_{OV2} , V_{OV3} & V_{OV4} - Saturation current i_D is directly determined by $v_{OV} \rightarrow 1/2k'_n V_{OVI}^2$, $1/2k'_n V_{OV2}^2$... - Boundary between triode and saturation regions = locus of the saturation points \rightarrow parabolic curve of

- In saturation, i_D is constant determined by v_{GS} (or v_{OV}) & is independent of v_{DS}

Figure 5.13 The $i_D - v_{DS}$ characteristics for an enhancement-type NMOS transistor.

$i_D - v_{GS}$ Characteristic (Saturation region)

Figure 5.14 The $i_D - v_{GS}$ characteristic of an NMOS transistor operating in the saturation region. The $i_D - v_{OV}$ characteristic can be obtained by simply re-labelling the horizontal axis; that is, shifting the origin to the point $v_{GS} = V_{tr}$.

Large-Signal Equivalent-Circuit Model in the Saturation Region

• The saturated MOSFET behaves as an ideal current source whose value is controlled by v_{GS} according to the below nonlinear relationship

$$i_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (v_{GS} - V_t)^2$$

• Large signal equivalent circuit : ideal current source with infinite output resistance $\rightarrow i_D$ is independent from v_{DS}

Finite Output Resistance in Saturation

- Ideal case : Infinite resistance in saturation $\rightarrow i_D$ is independent of $v_{DS} \rightarrow$ once channel is pinched off at the drain end, further increase in v_{DS} have *no effect on the channel's shape*
- practical case :
 - As v_{DS} is increased beyond v_{OV} , the channel pinch-off point is moved slightly away from the drain, toward the source.
 - Voltage *across the channel* remains constant at v_{OV}
 - The additional voltage applied to the drain appears as a voltage drop across the narrow depletion region between the end of channel and the drain region
 - The voltage, " v_{DS} v_{OV} " accelerates the electrons that reach the end of the channel and sweeps them across the depletion region into the drain.

 \rightarrow channel length modulation (*L* reduces to *L* – ΔL)

Finite Output Resistance in Saturation

Large-Signal Equivalent-Circuit Model in Saturation Region

Output resistance

$$r_o \equiv \left[\frac{\partial i_D}{\partial v_{DS}}\right]_{v_{GS} \text{ constant}}^{-1} = \left[\lambda \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_t)^2\right]^{-1} = \frac{1}{\lambda I_D} = \frac{V_A}{I_D}$$

where $I_D = \frac{1}{2} k_n \frac{W}{U} (V_{GS} - V_t)^2$ Drain current w/o channel-length modulation taken into account

Output resistance is *inversely* proportional to the drain current & *finite*

 r_0 models the linear dependence of i_D on v_{DS}

p-Channel MOSFET

p-Channel MOSFET

•
$$V_{tp} < 0, v_{SG} > 0, v_{SD} > 0$$

• Saturation region w/ channel-length modulation effect (λ , $V_A < 0$)

$$i_{D} = \frac{1}{2} k'_{p} \left(\frac{W}{L} \right) \left(v_{SG} - \left| V_{tp} \right| \right)^{2} \left(1 + \left| \lambda \right| v_{SD} \right) = \frac{1}{2} k'_{p} \left(\frac{W}{L} \right) \left(v_{SG} - \left| V_{tp} \right| \right)^{2} \left(1 + \frac{v_{SD}}{\left| V_{A} \right|} \right)$$

PMOS $i_D - v_{DS}$ Characteristics

i_D in Triode and Saturation Regions

In triode region

$$v_{GS} \le V_{tp} \quad or \quad v_{SG} \ge |V_{tp}|$$

$$v_{DS} \ge v_{GS} - V_t \quad (v_{GS}, V_{tp}, v_{DS} < 0)$$

$$i_D = k_p' \frac{W}{L} \left[(v_{GS} - V_{tp}) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

where $k'_p = \mu_p C_{ox}$

(Induced channel)

(Continuous channel)

drain voltage must be higher than gate voltage by at least $|V_t|$

 μ_p : mobility of holes in the induced *p* channel ($\mu_p = 0.25 \sim 0.5 \mu_n$)

In saturation region

$$v_{DS} \le v_{GS} - V_{tp} \quad (v_{GS}, V_{tp}, v_{DS}, \lambda < 0)$$
$$i_{D} = \frac{1}{2} k_{p}' \frac{W}{L} (v_{GS} - V_{tp})^{2} (1 + \lambda v_{DS})$$

(*Pinched – off channel*)

drain voltage must be lower than gate voltage by at least $|V_t|$

Relative Levels of Terminal Voltages for PMOS

To turn PMOS on, gate voltage has to be made lower than source voltage by at least $|V_{tp}|$ To operate in the triode region, the drain voltage has to exceed that of the gate by at least $|V_{tp}|$; otherwise, the PMOS operates in saturation

TABLE 4.1 Summary of the MOSFET Current-Voltage Characteristics

D

NMOS Transistor

Overdrive voltage:

 $v_{OV} = v_{GS} - V_i$ $v_{GS} = V_i + v_{OV}$

Operation in the triode region:

Conditions:

(1) $v_{GS} \ge V_i \iff v_{OV} \ge 0$ (2) $v_{GD} \ge V_i \iff v_{DS} \le v_{GS} - V_i \iff v_{DS} \le v_{OV}$

■ *i-v* Characteristics:

$$i_{D} = \mu_{u} C_{ox} \frac{W}{L} \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$

For $v_{DS} \ll 2(v_{GS} - V_i) \iff v_{DS} \ll 2v_{OV}$

$$r_{DS} \equiv \frac{v_{DS}}{i_D} = 1 / \left[\mu_n C_{os} \frac{W}{L} (v_{GS} - V_i) \right]$$

Operation in the saturation region:

Conditions:

(1)
$$v_{GS} \ge V_t \iff v_{OV} \ge 0$$

(2) $v_{GD} \le V_t \iff v_{DS} \ge v_{GS} - V_t \iff v_{DS} \ge v_{OV}$

■ *i-v* Characteristics:

$$i_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (v_{GS} - V_{t})^{2} (1 + \lambda v_{DS})$$

Large-signal equivalent circuit model:

A

where

$$I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2$$

Threshold voltage:

$$V_t = V_{t0} + \gamma(\sqrt{2\phi_f} + |V_{SB}| - \sqrt{2\phi_f})$$

Process parameters:

$$C_{ox} = \varepsilon_{ox}/t_{ox} \qquad (F/m^2)$$

$$k'_n = \mu_n C_{ox} \qquad (A/V^2)$$

$$V'_A = (V_A/L) \qquad (V/m)$$

$$\lambda = (1/V_A) \qquad (V^{-1})$$

$$\gamma = \sqrt{2qN_A\varepsilon_s}/C_{ox} \qquad (V^{1/2})$$

Constants:

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$$

 $\varepsilon_{ox} = 3.9\varepsilon_0 = 3.45 \times 10^{-11} \text{ F/m}$
 $\varepsilon_s = 11.7\varepsilon_0 = 1.04 \times 10^{-10} \text{ F/m}$
 $q = 1.602 \times 10^{-19} \text{ C}$

CNU EE

5.1-36

Summary

i-v Characteristics:

Same relationships as for NMOS transistors except:

- Replace μ_n , k'_n , and N_A with μ_p , k'_p , and N_D , respectively.
- V_{r} , V_{t0} , V_A , λ , and γ are negative.
- Conditions for operation in the **triode** region:
 - (1) $v_{GS} \le V_t \iff v_{OV} \le 0 \iff v_{SG} \ge |V_t|$ (2) $v_{DG} \ge |V_t| \iff v_{DS} \ge v_{GS} - V_t \iff v_{SD} \le |v_{OV}|$
- Conditions for operation in the saturation region:

(1)
$$v_{GS} \leq V_t \iff v_{OV} \leq 0 \iff v_{SG} \geq |V_t|$$

(2) $v_{DG} \leq |V_t| \iff v_{DS} \leq v_{GS} - V_t \iff v_{SD} \geq |v_{OV}|$

Large-signal equivalent circuit model:

$$r_{o} = \left[|\lambda| \frac{1}{2} \mu_{p} C_{ox} \frac{W}{L} (V_{SG} - |V_{t}|)^{2} \right]^{-1} = \frac{|V_{A}|}{I_{D}}$$

where

$$I_{D} = \frac{1}{2}\mu_{p}C_{ox}\frac{W}{L}(V_{SG} - |V_{t}|^{2})$$