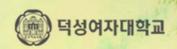
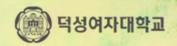


5 적분과 응용.

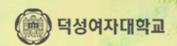


1. RIEMANN 합 (Lec8.xlsx 참고)

- 에제 1. 함수 $y = 2 (1/4)x^3$ 의 그래프, x축, 그리고 y 축으로 둘러싸인 부분의 넓이의 근삿값을 각 소구간의 왼쪽 끝값, 오른쪽 끝값 그리고 중간값을 이용한 Riemann 합으로 구하여 보자.
- 주어진 영역은 구간 [0,2] 위에서의 Riemann 합으로 구할 수 있다. 이제 소구간의 길이를 0.1이 되도록 n=20으로 선택하자.
- 정적분의 값은 근사적으로 $\int f(x)dx \cong \sum f(x_i^*)dx_i$ 와 같이 얻을 수 있다. 여기서 $f(x_i^*)$ 의 값으로 왼쪽 끝값, 오른쪽 끝값, 그리고 중간값을 선택하면 된다.
- 다음 페이지의 데이터를 이용하여 근사값을 구하자. 여기서 중간값에 의한 근삿값이 실제값 3.0에 가장 가맙다.



M	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
1	1 $f(x)=2-(1/4)*x^3$		a=	0		b= 2 n=		n=	20		dk=	0.1			
2	왼쪽 끝 값을 이용한 근		근사값			오른쪽 끝	끝 값을 이용한 근사값				중앙값을 이용한 근사		값		
3	n x_i		f(x_i)	f(x_i)*dx		n	x_i	f(x_i)	f(x_i)*dx		n	x_i	f(x_i)	f(x_i)*dx	
4	0	0	2	0.2		0	0	2	0.199975		(0	2	0.199988	
5	1	0.1	1.99975	0.199975		1	0.1	1.99975	0.1998		1	0.1	1.99975	0.199888	
6	2	0.2	1.998	0.1998		2	0.2	1.998	0.199325			2 0.2	1.998	0.199563	
7	3	0.3	1.99325	0.199325		3	0.3	1.99325	0.1984		3	3 0.3	1.99325	0.198863	
8	4	0.4	1.984	0.1984		4	0.4	1.984	0.196875		4	4 0.4	1.984	0.197638	
9	5	0.5	1.96875	0.196875		5	0.5	1.96875	0.1946			5 0.5	1.96875	0.195738	
10	6	0.6	1.946	0.1946		6	0.6	1.946	0.191425		(0.6	1.946	0.193013	
11	7	0.7	1.91425	0.191425		7	0.7	1.91425	0.1872			7 0.7	1.91425	0.189313	
16	12	1.2	1.568	0.1568		12	1.2	1.568	0.145075		12	2 1.2	1.568	0.150938	
17	13	1.3	1.45075	0.145075		13	1.3	1.45075	0.1314		13	3 1.3	1.45075	0.138238	
18	14	1.4	1.314	0.1314		14	1.4	1.314	0.115625		14	1.4	1.314	0.123513	
19	15	1.5	1.15625	0.115625		15	1.5	1.15625	0.0976		15	5 1.5	1.15625	0.106613	
20	16	1.6	0.976	0.0976		16	1.6	0.976	0.077175		16	5 1.6	0.976	0.087387	
21	17	1.7	0.77175	0.077175		17	1.7	0.77175	0.0542		17	7 1.7	0.77175	0.065687	
22	18	1.8	0.542	0.0542		18	1.8	0.542	0.028525		18	3 1.8	0.542	0.041362	
23	19	1.9	0.28525	0.028525		19	1.9	0.28525	0		19	1.9	0.28525	0.014262	
24	20	2	0	0		20	2	0	0		20	2	0	0	
25	100			3.0975					2.8975					2.9975	
26															



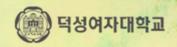
2. 사다리꼴과 SIMPSON의 법칙 (Lec8.xlsx 참고)

에제 2. 다음 정적분을 사다리골과 Simpson의 법칙을 이용하여 근삿값을 구하라.

$$\int_0^1 e^{x^3} dx$$

- 구간 [0,1] 위에서 소구간의 길이를 0.05로 하여 사다리꼴과 Simpson의 법칙을 이용하여 보자.
- 사다리꼴 법칙에 대한 데이터는 다음 페이지 표에서 보듯이 IF(A6=1,0,\$E\$3*(B6+B7)/2) 으로 첫 셀을 입력하고 채우기 핸들로 데이터를 채운다.
- Simpson의 법칙에 대한 데이터는

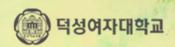
 (1/3)(2*중간값에 의한 근삿값+ 사다리꼴에 의한 근삿값)
 으로 근삿값을 구할 수 있다.



> Maple 등에 의한 정적분값인 1.3419044에 Simpson의 법칙에 의한 근삿값이 가장 가깝다는 것을 확인할 수 있다.

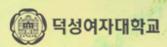
A	Α	В	С	D	E	F	G	Н
1	f(x) = exp	(x^3)						
2	a b		n		h			
3	0	1	20		0.05			
4	Trapezoid Method					Middle Rie		
5	x	f(x)	trapezoid		trap sum	mid point	mid sum	
6	0	1	0.05000313		1.3436013	0	0	
7	0.05	1.000125	0.05002814			0.025	0.05000078	
8	0.1	1.001001	0.05010953		Mid sum	0.075	0.0500211	
9	0.15	1.003381	0.05028532		1.3410567	0.125	0.05009775	
10	0.2	1.008032	0.05059449			0.175	0.05026869	
11	0.25	1.015748	0.05107789		Simpson	0.225	0.05057279	
12	0.3	1.027368	0.05177938		1.3419049	0.275	0.05105073	
13	0.35	1.043807	0.0527475			0.325	0.05174621	
22	0.8	1.668625	0.0879166			0.775	0.07963928	
23	0.85	1.848039	0.09802614			0.825	0.08766639	
24	0.9	2.073007	0.1107493			0.875	0.09770423	
25	0.95	2.356966	0.12688118			0.925	0.11033003	
26	1	2.718282	0			0.975	0.12632809	
27								

(Lec8.xlsx 참고)



1. RIEMANN 합 (Lec7.mw 참고)

- 에제 1. 함수 $y = 2 (1/4)x^3$ 의 그래프, x축, 그리고 y축으로 둘러싸인 부분의 넓이의 근삿값을 각 소구간의 왼쪽 끝값, 오른쪽 끝값 그리고 중간값을 이용한 Riemann 합으로 구하여 보자.
- 먼저 f(x) = 2 (1/4)x³라 정의하고 f(x) = 0을 풀어서 x = 2가 근임을 확인한다. 다음으로 student 꾸러미의 leftsum, leftbox, rightsum, rightbox, 그리고 middlesum, middlebox를 이용하여 구간 [0,2] 위에서 구하고자 하는 근삿값을 끽사각형으로 이루어진 그림과 더불어 구하여 본다.
- 다음 페이지의 그림들을 참고로 하자.



$$f := x \rightarrow 2 - \frac{1}{4} \cdot x^3$$

$$solve(f(x) = 0, x)$$

$$int(f(x), x=0..2)$$

with(student): leftsum(f(x), x = 0...2, 20)

value(%)

evalf(%%)

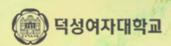
$$x \rightarrow 2 - \frac{1}{4} x^3$$

$$2, -1 - I \sqrt{3}, -1 + I \sqrt{3}$$

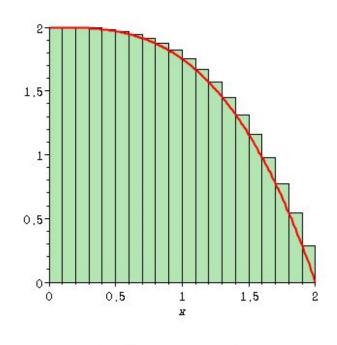
3

$$\frac{1}{10} \sum_{i=0}^{19} \left(2 - \frac{1}{4000} i^3 \right)$$

1239 400



leftbox(f(x), x = 0..2, 20)



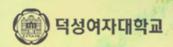
$$rightsum(f(x), x=0..2, 20)$$

 $\frac{1}{10} \sum_{i=1}^{20} \left(2 - \frac{1}{4000} i^3 \right)$

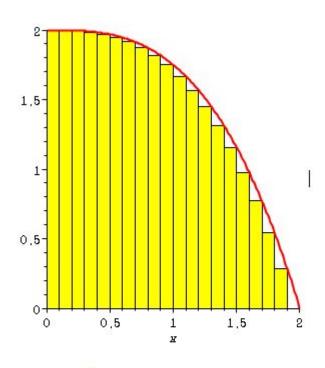
value(%)

 $\frac{1159}{400}$

evalf(%%)



rightbox(f(x), x=0..2, 20, shading=yellow)



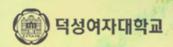
middlesum(f(x), x=0..2, 20)

value(%)

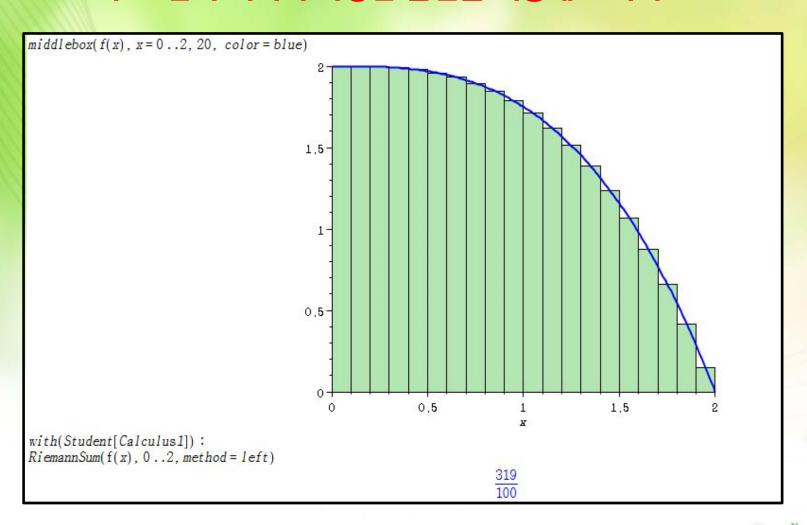
evalf(%%)

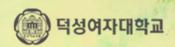
$$\frac{1}{10} \sum_{i=0}^{19} 2 - \frac{1}{4} \quad \frac{1}{10} i + \frac{1}{20}^{3}$$

2401 800



➤ Student[Calculus1] 꾸러미를 이용하여 Riemann합을 구하여 보자. 또한 꾸러미의 다양한 옵션을 이용해 보아라.



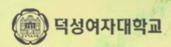


2. 사다리꼴과 SIMPSON의 법칙 (Lec7.mw 참고)

에제 2. 다음 정적분을 사다리골과 Simpson의 법칙을 이용하여 근삿값을 구하라.

$$\int_0^1 e^{x^3} dx$$

- $g(x) = exp(x^3)$ 으로 정의하고 student 꾸러미의 명령어 trapezoid와 simpson을 이용한다.
- $g:=x->exp(x^3)$
- int(g(x), x=0..1)
- evalf(%,10)
- with(student):
- trapeziod(g(x),x=0..1,4) (여기서 4는 소구간의 수.)
- evalf(%)
- simpson(g(x),x=0..1,4)
- evalf(%)

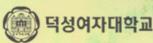


1. RIEMANN 합 (Lec6.nb 참고)

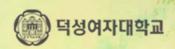
- 에제 1. 함수 $y = 2 (1/4)x^3$ 의 그래프, x축, 그리고 y축으로 둘러싸인 부분의 넓이의 근삿값을 각 소구간의 왼쪽 끝값, 오른쪽 끝값 그리고 중간값을 이용한 Riemann 합으로 구하여 보자.
- 먼저 f(x) = 2 (1/4)x³라 정의하고 다음페이지의 프로그램된 명령어
 leftRiemannSum, rightRiemannSum, midPointSum
 의용하여 구간 [0,2] 위에서 구하고자 하는 근삿값을 구한다.
- $f[x_]:=2-(1/4) x^3$
- leleftRiemannSum[f,0,2,20] (여기서 20은 소구간의 수)
- rightRiemannSum[f,,0,2,20]
- midPointSum[f,0,2,20]

```
덕성여자대학교
```

```
leftRiemannSum[f_, a_, b_, n_] :=
   Block[{h, x, i}, h = (b-a)/n;
           x[i] := a + h * i;
           N[Sum[f[x[i]] *h, {i, 0, n-1}]]
        1;
rightRiemannSum[f,a,b,n]:=
   Block[{h, x, i}, h = (b-a)/n;
           x[i_] := a + h * i;
           N[Sum[f[x[i]] *h, {i, 1, n}]]
        1;
midPointSum[f_, a_, b_, n_] :=
   Block[{h, x, i}, h = (b-a)/n;
           x[i] := a + h * i;
           N[Sum[f[(x[i] + x[i+1])/2] *h,
            {i, 0, n-1}]]
        1;
f[x] := 2 - (1/4) *x^3
leftRiemannSum[f, 0, 2, 20]
3.0975
rightRiemannSum [f, 0, 2, 20]
2.8975
midPointSum[f, 0, 2, 20]
3.00125
```



 다음과 같이 각 경우를 나타내는 찍사각형을 그려보자. a=0; b=2; $p1 = Plot[f[x], \{x,a,b\}, PlotRange -> \{0,9/4\},$ PlotStyle -> {{Thickness[0.005],Blue}}]; dX = (b-a)/n; $X=Table[a+i (b-a)/n,{i,0,n}];$ partition1 = Graphics[{EdgeForm[Thin], Green, Table[Rectangle[{X[[i]],0},{X[[i+1]],f[X[[i]]]}],{i,1,n}]}, PlotLabel->" leftSum"]; Show[{partition1,p1}] partition2 = Graphics[{EdgeForm[Thin],Green, Table[Rectangle[{X[[i]],0},{X[[i+1]],f[X[[i+1]]]}],{i,1,n}]}, PlotLabel->" rightSum"]; Show[{partition2,p1}] partition3 = Graphics[{EdgeForm[Thin],Green, Table[Rectangle[{X[[i]],0}, ${X[[i+1]],f[(X[[i]]+X[[i+1]])/2]},{i,1,n}]},$ PlotLabel->" middleSum"]; **Show**[{partition3,p1}]



2. 사다리꼴과 SIMPSON의 법칙 (Lec7.mw 참고)

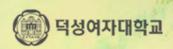
에제 2. 다음 정적분을 사다리골과 Simpson의 법칙을 이용하여 근삿값을 구하라.

$$\int_0^1 e^{x^3} dx$$

■ g(x)=exp(x^3)으로 정의하고 적분값을 구해보까.

```
g[x_]:=Exp[x^3];
int=Integrate[g[x],{x,0,1}];
N[%,8]
```

 $1.34190442 + 0. \times 10^{-9} i$



■ 이제 trapezoidSum과 simpsonSum을 아래와 같이 작성하고 이를 이용하여 값을 구하자.

```
trapezoidalSum[g_,a_,b_,n_] := (leftRiemannSum[g,a,b,n]+rightRiemannSum[g,a,b,n])/2; simpsonSum[g_,a_,b_,n_] := (2 midPointSum[g,a,b,n]+trapezoidalSum[g,a,b,n])/3;
```

trapezoidalSum[g,0,1,20]

simpsonSum[g,0,1,20]

1.3436