일곱째주

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions (2)

Chemistry of Acid Halides

- Acid chlorides are prepared from carboxylic acids by reaction with SOCl₂
- Reaction of a carboxylic acid with PBr₃ yields the acid bromide

Acid Halide의 반응

- Nucleophilic acyl substitution
- Halogen replaced by —OH, by —OR, or by —NH₂
- Reduction yields a primary alcohol
- Grignard reagent yields a tertiary alcohol

Hydrolysis: Acid Halides into Acids

- Acid chlorides react with water to yield carboxylic acids
- HCl is generated during the hydrolysis: a base is added to remove the HCl

Conversion of Acid Halides to Esters

- Esters are produced in the reaction of acid chlorides with alcohols in the presence of pyridine or NaOH. This is called **Alcoholysis**
- The reaction is better with less steric bulk

Aminolysis:Acid Halides into Amides

- Amides result from the reaction of acid chlorides with NH₃, primary (RNH₂) and secondary amines (R₂NH)
- The reaction with tertiary amines (R₃N) gives an unstable species that cannot be isolated
- HCl is neutralized by the amine or an added base

CH₃CHCCI + 2 NH₃
$$\longrightarrow$$
 CH₃CHCNH₂ + NH₄ CIT

2-Methylpropanoyl chloride

2-Methylpropanamide (83%)

CH₃

2-Methylpropanamide (83%)

CH₃

CH₃

2-Methylpropanamide (83%)

CH₃

CH

Reduction: Acid Chlorides into Alcohols

 LiAlH₄ reduces acid chlorides to yield aldehydes and then primary alcohols

Benzoyl chloride

Benzyl alcohol (96%)

Reaction of Acid Chlorides with Organometallic Reagents

• Grignard reagents react with acid chlorides to yield tertiary alcohols in which two of the substituents are the same

Formation of Ketones from Acid Chlorides

- Reaction of an acid chloride with a lithium diorganocopper (Gilman) reagent, Li⁺ R₂Cu⁻
- Addition produces an acyl diorganocopper intermediate, followed by loss of R'Cu and formation of the ketone

Acid Anhydrides

• Prepared by nucleophilic acyl substitution of a carboxylate with an acid chloride

Acid Anhydrides의 반응

Similar to acid chlorides in reactivity

Acetylation

 Acetic anhydride forms acetate esters from alcohols and Nsubstituted acetamides from amines

Esters

- Many esters are pleasant-smelling liquids: fragrant odors of fruits and flowers
- Also present in fats and vegetable oils

Esters

• Esters are usually prepared from carboxylic acids

Reactions of Esters

 Less reactive toward nucleophiles than are acid chlorides or anhydrides

 Cyclic esters are called lactones and react similarly to acyclic esters

Hydrolysis: Esters into Carboxylic Acids

 An ester is hydrolyzed by aqueous base or aqueous acid to yield a carboxylic acid plus an alcohol

Ester Hydrolysis 기전

- Hydroxide catalysis via an addition intermediate
- 1. Nucleophilic addition of hydroxide ion to the ester carbonyl group gives the usual tetrahedral alkoxide intermediate.
- 2. Elimination of alkoxide ion then generates the carboxylic acid
- 3. Alkoxide ion abstracts the acidic proton from the carboxylic acid and yields a carboxylate ion.
- 4. Protonation of the carboxylate ion by addition of aqueous mineral acid in a separate step then gives the free carboxylic acid

Aminolysis of Esters

• Ammonia reacts with esters to form amides

Reduction: Esters into Alcohols

Reaction with LiAlH₄ yields primary alcohols

Mechanism of Reduction of Esters

- Hydride ion adds to the carbonyl group, followed by elimination of alkoxide ion to yield an aldehyde
- Reduction of the aldehyde gives the primary alcohol

A primary alcohol

Reaction of Esters with Grignard Reagents

React with 2 equivalents of a Grignard reagent to yield a tertiary alcohol

Methyl benzoate

Triphenylmethanol (96%)

Amides

• Amides are abundant in all living organisms...proteins, nucleic acids, and other pharmaceuticals have amid functional groups

Preparation of Amides

• Prepared by reaction of an acid chloride with ammonia, monosubstituted amines, or disubstituted amines

Reactions of Amides

- Heating in either aqueous acid or aqueous base produces a carboxylic acid and amine
- Acidic hydrolysis by nucleophilic addition of water to the protonated amide, followed by loss of ammonia

$$\begin{array}{c} : \text{O:} \\ \text{R} \overset{!}{\text{C}} \overset{!}{\text{NH}_2} \end{array} \xrightarrow{\text{H}_3\text{O}^+} \\ \text{An amide} \end{array} \begin{array}{c} : \overset{!}{\text{O}} \overset{!}{\text{H}} \\ \text{R} \overset{!}{\text{C}} \overset{!}{\text{NH}_2} \end{array} \xrightarrow{\text{H}_2\text{N}} \overset{!}{\text{H}} \end{array} \xrightarrow{\text{H}_2\text{N}} \overset{!}{\text{H}} \overset{!}{\text{H}} \overset{!}{\text{N}} \overset{$$

Basic Hydrolysis of Amides

Addition of hydroxide and loss of amide ion

Reduction: Amides into Amines

- Reduced by LiAlH₄ to an amine rather than an alcohol
- Converts C=O → CH₂

$$CH_{3}(CH_{2})_{9}CH_{2} \xrightarrow{C} CH_{3} \xrightarrow{1. \text{LiAlH}_{4} \text{ in ether}} CH_{3} \xrightarrow{CH_{3}(CH_{2})_{9}CH_{2}} CH_{3} \xrightarrow{CH_{3}(CH_{2})_{9}CH_{2}} CH_{3}$$

N-Methyldodecanamide

Dodecylmethylamine (95%)

Mechanism of Reduction

- Addition of hydride to carbonyl group
- Loss of the oxygen as an aluminate anion to give an iminium ion intermediate which is reduced to the amine

Uses of Reduction of Amides

- Works with cyclic and acyclic
- Good route to cyclic amines

A lactam

A cyclic amine (80%)