
아홉째주

Carbonyl Alpha-Substitution Reactions (2)

Acidity of Alpha Hydrogen Atoms

Enolate Ion Formation

- Carbonyl compounds can act as weak acids (pK_a of acetone = 19.3; pK_a of ethane = 60)
- The conjugate base of a ketone or aldehyde is an enolate ion the negative charge is delocalized onto oxygen

Reagents for Enolate Formation

- Ketones are weaker acids than the OH of alcohols so a more powerful base than an alkoxide is needed to form the enolate
- Sodium hydride (NaH) or lithium diisopropylamide [LiN(i- C_3H_7)₂] are strong enough to form the enolate

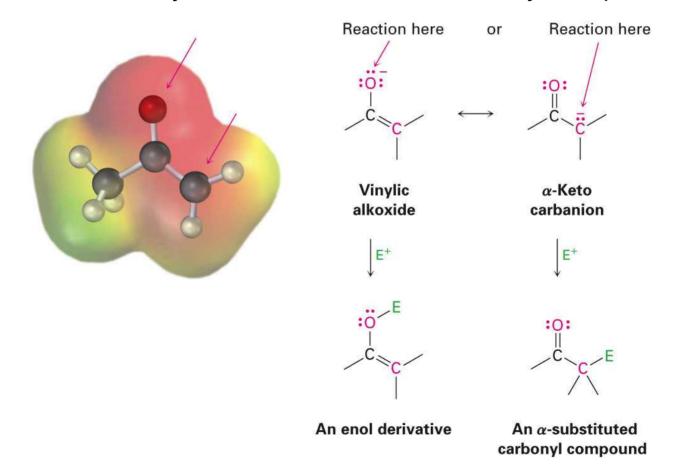
Lithium Diisopropylamide (LDA)

- LDA is from butyllithium (BuLi) and diisopropylamine (p $K_a \approx 40$)
- Soluble in organic solvents and effective at low temperature with many compounds
- Not nucleophilic

β-Dicarbonyls Are More Acidic

- When a hydrogen atom is flanked by two carbonyl groups, its acidity is enhanced
- Negative charge of enolate delocalizes over both carbonyl groups

2,4-Pentanedione (p $K_a = 9$)


Acidities of Organic Compounds

Functional group	Example	p <i>K</i> a
	O.	
Carboxylic acid	CH₃COH	5
	0 0	
1,3-Diketone	сн ₃ Ёсн ₂ Ёсн ₃	9
	O O	
3-Keto ester	CH₃CCH₂COCH₃	11
	0 0	
1,3-Diester	CH₃OĊCH₂ĊOCH₃	13
Alcohol	CH ₃ OH	16
	O	
Acid chloride	CH ₃ CCI	16

Aldehyde	O CH ₃ CH	17
Ketone	O CH ₃ CCH ₃	19
Thioester	O CH ₃ CSCH ₃	21
Ester	O CH ₃ COCH ₃	25
Nitrile	CH ₃ C≡N	25
<i>N,N-</i> Dialkylamide	CH ₃ CN(CH ₃) ₂	30
Dialkylamine	$HN(i-C_3H_7)_2$	40

Reactivity of Enolate Ions

- The carbon atom of an enolate ion is electron-rich and highly reactive toward electrophiles (enols are not as reactive)
- Reaction on oxygen yields an enol derivative
- Reaction on carbon yields an α-substituted carbonyl compound

Alkylation of Enolate Ions

Base-promoted reaction occurs through an enolate ion intermediate

Constraints on Enolate Alkylation

- S_N2 reaction:, the leaving group X can be chloride, bromide, iodide, or tosylate.
- R should be primary or methyl and preferably should be allylic or benzylic.
- Secondary halides react poorly, and tertiary halides don't react at all because of competing elimination.

$$R-X \begin{cases} -X: \text{ Tosylate } > -I > -Br > -CI \\ R-: \text{ Allylic} \approx \text{Benzylic } > \text{H}_3C-- > \text{RCH}_2-- \end{cases}$$

The Malonic Ester Synthesis

 For preparing a carboxylic acid from an alkyl halide while lengthening the carbon chain by two atoms

Formation of Enolate and Alkylation

- Malonic ester (diethyl propanedioate) is easily converted into its enolate ion by reaction with sodium ethoxide in ethanol
- The enolate is a good nucleophile that reacts rapidly with an alkyl halide to give an a-substituted malonic ester

Dialkylation

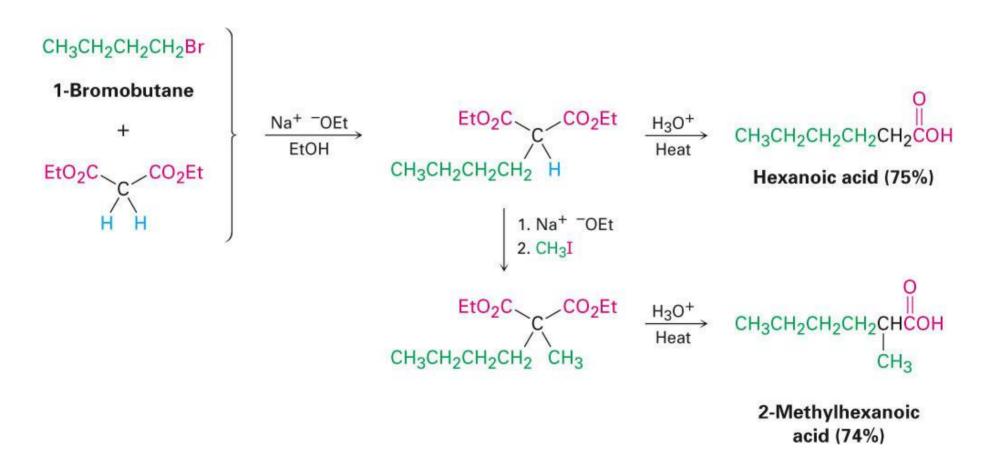
• The product has an acidic α -hydrogen, allowing the alkylation process to be repeated

An alkylated malonic ester A dialkylated malonic ester

Hydrolysis and Decarboxylation

 The malonic ester derivative hydrolyzes in acid and loses CO₂ ("decarboxylation") to yield a substituted monoacid

An alkylated malonic ester


A carboxylic acid

Decarboxylation of β-Ketoacids

 Decarboxylation requires a carbonyl group two atoms away from the —CO₂H

Overall Conversion

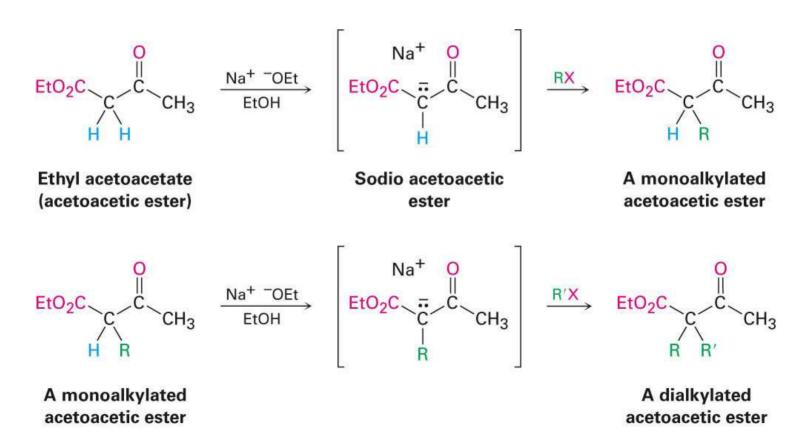
• The malonic ester synthesis converts an alkyl halide into a carboxylic acid while lengthening the carbon chain by two atoms

Preparation Cycloalkane Carboxylic Acids

- 1,4-dibromobutane reacts twice, giving a cyclic product
- Three-, four-, five-, and six-membered rings can be prepared in this way

1,4-Dibromobutane

$$\longrightarrow \begin{array}{c} H_2C \xrightarrow{C^2} CO_2Et \\ H_2C \xrightarrow{C} CO_2Et \\ H_2 \end{array} \xrightarrow{H_3O^+} CO_2Et \xrightarrow{H_3O^+} CO_2Et$$


$$Cyclopentane-carboxylic acid$$

Acetoacetic Ester Synthesis

• Overall: converts an alkyl halide into a methyl ketone

Acetoacetic Ester (Ethyl Acetoacetate)

- α carbon is flanked by two carbonyl groups, so it readily becomes an enolate ion
- This can be alkylated by an alkyl halide and also can react with a second alkyl halide

Generalization: β-Keto Esters

- The sequence: enolate ion formation, alkylation, hydrolysis/decarboxylation is applicable to b-keto esters in general
- Cyclic b-keto esters give 2-substituted cyclohexanones