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Partial Correlation

The number of churches and the number of crimes are highly and
positively correlated. The reason? It is because of population.

For random variables X ,Y , correlation ρX ,Y = Corr(X ,Y ) captures a
degree of linear dependence between the two.

Partial correlation of X and Y excluding Z is denoted by

ρX ,Y |Z = corr(X ,Y |Z )

and computed as follows. We will regress X on Z and Y on Z , trying
to remove the influence of Z and to take the residual of each. Then
compute the correlation of the residuals.

X = Zα + eX

Y = Zβ + eY ,

Then we can show that

ρX ,Y |Z =
ρX ,Y − ρX ,ZρY ,Z√
1− ρ2X ,Z

√
1− ρ2Y ,Z

.
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Partial Correlation cont.

Recall the regression: regress Y on X after centering X and Y
[Example 3.14 in the book]

min
α

E [(Y − Xα)2]

= min
α

Var [Y ]− 2αCov(X ,Y ) + α2Var(X ).

The first order condition leads to

α̂ =
Cov(X ,Y )

Var(X )
w corr(X ,Y ).

The approximation was made under the condition Var(X ) = Var(Y ).

Partial Correlation for AR(1) xt = φxt−1 + at ?
φ11 = Corr(xt , xt−1) = ρ(1) = φ.
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Partial Correlation cont.

φ22 = Corr(xt , xt−2|xt−1)

= Corr(xt − αxt−1, xt−2 − βxt−1)

= Corr(at , at−1) = 0

φ33 = Corr(xt , xt−3|xt−1, xt−2)

= Corr(xt − α1xt−1 − α2xt−2, xt−2 − β1xt−1 − β2xt−2)

= Corr(at , xt−2 − β1xt−1 − β2xt−2) = 0

Partial Correlation for AR(2) xt = φ1xt−1 + φ2xt−2 + at ?
The same procedure reveals that
φ11 = ρ(1) = φ1

1−φ2 , φ22 = . . .
φ33 = Corr(xt − φ1xt−1 − φ2xt−2, xt−3 − β1xt−2 − β2xt−1) =
Corr(at , . . .) = 0
φ44 = 0, · · · .
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Partial Correlation cont.

In general, PACF (partial autocorrelation function) is computed via

ρ1 = φh1 + φh2ρ1 + · · ·+ φhhρh−1

ρ2 = φh1ρ1 + φh2 + · · ·+ φhhρh−2

· · ·
ρh = φh1ρh−1 + φh2ρh−2 + · · ·+ φhh.ρh−2

Solve for φhh from the system of equations.

[Example] For AR(2),

[
ρ(1)
ρ(2)

]
=

[
1 ρ(1)
ρ(1) 1

] [
φ21
φ22

]
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Behavior of ACF and PACF
108 3 ARIMA Models

Table 3.1. Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p, q)

ACF Tails off Cuts off Tails off
after lag q

PACF Cuts off Tails off Tails off
after lag p

Example 3.17 Preliminary Analysis of the Recruitment Series

We consider the problem of modeling the Recruitment series shown in Fig-
ure 1.5. There are 453 months of observed recruitment ranging over the
years 1950-1987. The ACF and the PACF given in Figure 3.5 are con-
sistent with the behavior of an AR(2). The ACF has cycles correspond-
ing roughly to a 12-month period, and the PACF has large values for
h = 1, 2 and then is essentially zero for higher order lags. Based on Ta-
ble 3.1, these results suggest that a second-order (p = 2) autoregres-
sive model might provide a good fit. Although we will discuss estimation
in detail in §3.6, we ran a regression (see §2.2) using the data triplets
{(x; z1, z2) : (x3;x2, x1), (x4;x3, x2), . . . , (x453;x452, x451)} to fit a model of
the form

xt = φ0 + φ1xt−1 + φ2xt−2 + wt

for t = 3, 4, . . . , 453. The values of the estimates were φ̂0 = 6.74(1.11),

φ̂1 = 1.35(.04), φ̂2 = −.46(.04), and σ̂2
w = 89.72, where the estimated standard

errors are in parentheses.
The following R code can be used for this analysis. We use the script acf2

to print and plot the ACF and PACF; see Appendix R for details.
1 acf2(rec, 48) # will produce values and a graphic

2 (regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))

3 regr$asy.se.coef # standard errors of the estimates

3.5 Forecasting

In forecasting, the goal is to predict future values of a time series, xn+m, m =
1, 2, . . ., based on the data collected to the present, xxx = {xn, xn−1, . . . , x1}.
Throughout this section, we will assume xt is stationary and the model pa-
rameters are known. The problem of forecasting when the model parameters
are unknown will be discussed in the next section; also, see Problem 3.26. The
minimum mean square error predictor of xn+m is

xnn+m = E(xn+m
∣∣ xxx) (3.57)

because the conditional expectation minimizes the mean square error

Figure : Behavior of the ACF and PACF for ARMA Models

By the behavior of ACF and PACF, we can empirically determine an
appropriate ARMA model. Refer to [Example 3.17 in the book]
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Behavior of ACF and PACF (cont.)

3.4 Autocorrelation and Partial Autocorrelation 107
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Fig. 3.4. The ACF and PACF of an AR(2) model with φ1 = 1.5 and φ2 = −.75.

because, by causality, xt − x̂t depends only on {wt+h−1, wt+h−2, . . .}; recall
equation (3.54). When h ≤ p, φpp is not zero, and φ11, . . . , φp−1,p−1 are not
necessarily zero. We will see later that, in fact, φpp = φp. Figure 3.4 shows
the ACF and the PACF of the AR(2) model presented in Example 3.10.

To reproduce Figure 3.4 in R, use the following commands:
1 ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]

2 PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)

3 par(mfrow=c(1,2))

4 plot(ACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)

5 plot(PACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)

Example 3.16 The PACF of an Invertible MA(q)

For an invertible MA(q), we can write xt = −∑∞j=1 πjxt−j +wt. Moreover,
no finite representation exists. From this result, it should be apparent that
the PACF will never cut off, as in the case of an AR(p).

For an MA(1), xt = wt + θwt−1, with |θ| < 1, calculations similar to
Example 3.14 will yield φ22 = −θ2/(1 + θ2 + θ4). For the MA(1) in general,
we can show that

φhh = − (−θ)h(1− θ2)

1− θ2(h+1)
, h ≥ 1.

In the next section, we will discuss methods of calculating the PACF. The
PACF for MA models behaves much like the ACF for AR models. Also, the
PACF for AR models behaves much like the ACF for MA models. Because
an invertible ARMA model has an infinite AR representation, the PACF will
not cut off. We may summarize these results in Table 3.1.

Figure : Behavior of the ACF and PACF in Example 3.17

AR(2) seems to be appropriate.

Also use [Property 1.1]: for white noise

ρ̂x(h) ∼ N(0, 1/
√
n) for large n.
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Model building

Given x1, x2, · · · ,, let us try to fit it into ARMA(p,q).

1 We need to decide p, q → Model Identification
2 Estimate unknown parameters → Model Estimation
3 Verify that it is a reasonable model → Diagnostic Checking
4 Then, we predict

Often, the steps of Model Identification and Diagnostic Checking are
hard to separate, so they are considered together.

For the above steps, we use
1 ACF and PACF
2 Asymptotic (large-n) tests

1 Box-Ljung test
2 Sign test
3 Rank test
4 Q-Q plot

3 AIC, BIC, FPE, · · ·

Kichun Lee Time Series Analysis Hanyang University, Fall, 2013 8 / 12



Testing if ACF follows WN

We want to test if ρ̂(h) is significant:

{
H0 : ρ̂(h) is the same as that of WN
Ha : not H0.

Recall that in [Property 1.1]

ρ̂x(h) ∼ N(0, 1/
√
n) for large n.

To understand it, use ρ̂(h) = 1
N−h

∑N−h
t=1 atat−h

E [ρ̂(h)] = 0 and
Var [ρ̂(h)] = 1

N−h .

Usually, we have the CI of ρ̂(h) to be 2/
√
N.
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Checking residuals

After a model is fit, the residual ât should behave just like white noise
as was assumed.
Another way to test if ât follows white noise is Ljung-Box-Pierce
Q-statistics. It is a kind of χ2 test.

I For autocorrelation function, r̂h, of residuals after fitting ARMA(p,q)
r̂h ∼ N(0, 1/n)
nr̂2h ∼ χ2

1.
I Thus, Box-Pierce statistics for ARMA(p,q)

Q = n
∑k

h=1 r̂
2
h ∼ χ2

k−p−q
I large Q ≈ the assumption not satisfied ≈ p-value small ≈ there can be

a better model than the used one
I Sometimes a modified version is used

Q = n(n + 2)
∑k

h=1 r̂
2
h/(n − k) ∼ χ2

k−p−q
I Practically, k is chosen to be around 20

The sum of the squared residuals (SSR) tells us how much the model
fits.

The Box-Pierce test involves how the residuals as a group behave like
white noise.
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Checking residuals (cont.)

We can also draw a normal-probability plot or a q-q plot to see if the
residuals follow a normal distribution. 3.8 Building ARIMA Models 151

Standardized Residuals
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Fig. 3.17. Diagnostics of the residuals from MA(2) fit on GNP growth rate.

some possibilities in Chapters 5 and 6. The diagnostics shown in Figure 3.17
are a by-product of the sarima command from the previous example.9

Example 3.40 Diagnostics for the Glacial Varve Series

In Example 3.32, we fit an ARIMA(0, 1, 1) model to the logarithms of the
glacial varve data and there appears to be a small amount of autocorrelation
left in the residuals and the Q-tests are all significant; see Figure 3.18.

To adjust for this problem, we fit an ARIMA(1, 1, 1) to the logged varve
data and obtained the estimates

φ̂ = .23(.05), θ̂ = −.89(.03), σ̂
2
w = .23.

Hence the AR term is significant. The Q-statistic p-values for this model are
also displayed in Figure 3.18, and it appears this model fits the data well.

As previously stated, the diagnostics are byproducts of the individual
sarima runs. We note that we did not fit a constant in either model because

9 The script tsdiag is available in R to run diagnostics for an ARIMA object,
however, the script has errors and we do not recommend using it.

Figure : Diagnostics of the residuals
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Model selection by AIC, BIC

Then we will look at AIC and BIC values for model selection.

While adding more parameters makes residuals small, it might worsen
the ability of prediction.

Thus, for theoretical prediction performance, we use AIC, Akaike,
criterion from ARMA(p,q)

AIC = −2 log(L̂) + 2(p+q+1)n
n−p−q−2 .

The term L̂ is the likelihood value after fitting the ARMA(p,q) model.
The second term is a penalty factor for large p or q.
So we consider the compromise between model fitting and the
number of parameters.

We would like to find the model which minimizes AIC values.

Another criterion is BIC, Bayesian Information Criterion:
BIC = −2 log(L̂) + 2(p + q + 1) log n.

Refer to [Example 2.2 in the book]
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