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Partial Correlation

@ The number of churches and the number of crimes are highly and
positively correlated. The reason? It is because of population.

@ For random variables X, Y, correlation px y = Corr(X, Y captures a
degree of linear dependence between the two.

@ Partial correlation of X and Y excluding Z is denoted by

pxy|z = corr(X, Y|Z)

and computed as follows. We will regress X on Z and Y on Z, trying
to remove the influence of Z and to take the residual of each. Then
compute the correlation of the residuals.

XZZCM'FEX
Y =273+ ey,

Then we can show that
PX,Y — PX,ZPY,Z

pPX, Y|z = > >
\/1 - pX,Z\/l ~—Pyz
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Partial Correlation con

@ Recall the regression: regress Y on X after centering X and Y
[Example 3.14 in the book]

min E[(Y — Xa)?]
= min Var[Y] — 2aCov(X, Y) + o Var(X).

The first order condition leads to

Cov(X,Y)
Var(X)

&= = corr(X,Y).

The approximation was made under the condition Var(X) = Var(Y).
e Partial Correlation for AR(1) x; = ¢x¢—1 + ar ?

¢11 = Corr(x¢, x¢—1) = p(1) = ¢.
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Partial Correlation con

¢ = COff(Xt, Xt—2|Xt—1)
= COff(Xt — OXt—1,Xt—2 — /th—l)

= Corr(at,a:-1) =0

¢33 = CO”(Xt, Xt—3|Xt—1a Xt—2)
= Corr(xs — 01Xe—1 — Q2Xt—2, Xt—2 — P1Xe—1 — PaX¢—2)

= Corr(ag, xt—2 = Pixe—1— Poxr—2) =0

e Partial Correlation for AR(2) x; = ¢1x¢—1 + ¢oxe—2 + ar ?
The same procedure reveals that
$11 = p(1) = %2)2#1522 =...
¢33 = Corr(xt — P1X¢—1 — P2Xr—2,Xt-3 — PBi1xe—2 — Paxz—1) =
Corr(at,...) =0
Gaa =0,
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Partial Correlation con

@ In general, PACF (partial autocorrelation function) is computed via

P1 = On1 + On2p1 + -+ Grrpr—1
P2 = Gp1p1 + Gh2 + - + Phhph—2

Ph = On1Ph-1 + Pr2ph—2 + ** + Ghh-ph—2

Solve for ¢pp from the system of equations.
e [Example] For AR(2),

o) Ly ]
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Behavior of ACF and PACF

AR(p) MA(q) ARMA(p, )
ACF Tails off Cuts off Tails off
after lag ¢
PACF Cuts off Tails off Tails off
after lag p

Figure : Behavior of the ACF and PACF for ARMA Models

@ By the behavior of ACF and PACF, we can empirically determine an
appropriate ARMA model. Refer to [Example 3.17 in the book]
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Behavior of ACF and PACF ()
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Figure : Behavior of the ACF and PACF in Example 3.17

@ AR(2) seems to be appropriate.

@ Also use [Property 1.1]: for white noise

Px(h) ~ N(0,1/+/n) for large n.
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Model building

e Given xq,x2,--- ,, let us try to fit it into ARMA(p,q).

@ We need to decide p, g — Model Identification

@ Estimate unknown parameters — Model Estimation

© Verify that it is a reasonable model — Diagnostic Checking
© Then, we predict

@ Often, the steps of Model Identification and Diagnostic Checking are
hard to separate, so they are considered together.

@ For the above steps, we use
@ ACF and PACF
@ Asymptotic (large-n) tests
@ Box-Ljung test
@ Sign test
©® Rank test
0 Q-Q plot
@ AIC, BIC, FPE, ---
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Testing if ACF follows WN

e We want to test if p(h) is significant:

Ho : p(h) is the same as that of WN
H; : not Hp.

Recall that in [Property 1.1]

Px(h) ~ N(0,1/+/n) for large n.

To understand it, use p(h) = w7 Son " acar—n
E[p(h)] =0 and
Var[p(h)] = 7.

@ Usually, we have the Cl of (h) to be 2/v/N.
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Checking residuals

o After a model is fit, the residual 3; should behave just like white noise
as was assumed.
@ Another way to test if 3; follows white noise is Ljung-Box-Pierce
Q-statistics. It is a kind of x? test.
» For autocorrelation function, ?,, of residuals after fitting ARMA(p,q)
Pn ~ N(0,1/n)
nfi ~ X3
» Thus, Box-Pierce statistics for ARMA(p,q)
Q =n Zﬁ:l ?ﬁ ~ Xi—p—q
> large Q ~ the assumption not satisfied ~ p-value small = there can be
a better model than the used one
» Sometimes a modified version is used
Q = n(n+2) 34y 77/(n— k) ~ Xk,
» Practically, k is chosen to be around 20
@ The sum of the squared residuals (SSR) tells us how much the model
fits.
@ The Box-Pierce test involves how the residuals as a group behave like
white noise.
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Checking residuals (o)

@ We can also draw a normal-probability plot or a g-q plot to see if the
residuals follow a normal distribution.

Standardized Residuals
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Model selection by AIC, BIC

Then we will look at AIC and BIC values for model selection.

@ While adding more parameters makes residuals small, it might worsen
the ability of prediction.

@ Thus, for theoretical prediction performance, we use AIC, Akaike,
criterion from ARMA(p,q)
AIC = —2log(D) + T25727.
The term L is the likelihood value after fitting the ARMA(p,q) model.
The second term is a penalty factor for large p or g.
So we consider the compromise between model fitting and the
number of parameters.

@ We would like to find the model which minimizes AlIC values.

@ Another criterion is BIC, Bayesian Information Criterion:

~

BIC = —2log(L) +2(p + q + 1) log n.
@ Refer to [Example 2.2 in the book]
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