Aldehydes and Ketones: Nucleophilic Addition Reactions

McMurry, 'Fundamentals of Organic Chemistry', 7th Ed.

Chapter 9

Aldehydes and Ketones

- Aldehydes (RCHO) and ketones (R₂CO) are characterized by the the carbonyl functional group (C=O)
- The compounds occur widely in nature as intermediates in metabolism and biosynthesis

© 2007 Thomson Higher Education

phosphate (PLP)

Why this Chapter?

 Much of organic chemistry involves the chemistry of carbonyl compounds

 Aldehydes/ketones are intermediates in synthesis of pharmaceutical agents, biological pathways, numerous industrial processes

An understanding of their properties is essential

9.1 The Nature of Carbonyl Compounds

Carbonyl Compounds:

- 1. Aldehydes and Ketones
- 2. Carboxylic Acid and their Derivatives

The –R' and –H in these compounds *can't* act as leaving groups in nucleophilic substitution reactions.

The –OH, –X, –OR', –SR, –NH₂, –OCOR', and –OPO₃^{2–} in these compounds *can* act as leaving groups in nucleophilic substitution reactions.

Electronic Structure of the Carbonyl Group

- The carbonyl carbon atom is sp²-hybridized and forms three σ bonds
- The fourth valence electron remains in a carbon p orbital and forms a π bond to oxygen by overlap with an oxygen p orbital
- Carbonyl compounds are planar about the double bond and have bond angles of approximately 120°

Figure 9.1 Electronic structure of the carbonyl group.

9.2 Naming Aldehydes and Ketones

- **Aldehydes** are named by replacing the terminal -e of the corresponding alkane name with -al
- The parent chain must contain the -CHO group
 - The –CHO carbon is numbered as C1

If the -CHO group is attached to a ring, use the suffix carbaldehyde

common names

Table 9.1 Common Names of Some Simple Aldehydes		
Formula	Common name	Systematic name
НСНО	Formaldehyde	Methanal
CH ₃ CHO	Acetaldehyde	Ethanal
H ₂ C=CHCHO	Acrolein	Propenal
CH ₃ CH=CHCHO	Crotonaldehyde	But-2-enal
СНО	Benzaldehyde	Benzenecarbaldehyde

Naming Ketones

- Replace the terminal -e of the alkane name with -one
- Parent chain is the longest one that contains the ketone group
 - Numbering begins at the end nearer the carbonyl carbon

Ketones with Common Names

 IUPAC retains well-used but unsystematic names for a few ketones

Ketones and Aldehydes as Substituents

 The R–C=O as a substituent is an acyl group, used with the suffix -y/from the root of the carboxylic acid

 The prefix oxo- is used if other functional groups are present and the doubly bonded oxygen is labeled as a substituent on a parent chain

9.3 Synthesis of Aldehydes and Ketones

Preparing Aldehydes

Oxidize primary alcohols using periodinane

Preparing Ketones

Oxidize a 2° alcohol using CrO₃ or Na₂Cr₂O₇

4-tert-Butylcyclohexanol

4-tert-Butylcyclohexanone (90%)

Hydration of terminal alkynes in the presence of Hg²⁺

$$CH_{3}CH_{2}CH_{2}C\equiv CH \qquad \xrightarrow{H_{3}O^{+}} \qquad CH_{3}CH_{2}CH_{2}CH_{2} \qquad CH_{3}CH_{2}CH_{2}CH_{2} \qquad CH_{3}CH_{2}CH_{2}CH_{2}CH_{2} \qquad CH_{3}CH_{2}C$$

 Friedel–Crafts acylation of an aromatic ring with an acid chloride in the presence of AICl₃ catalyst

9.4 Oxidation of Aldehydes

 CrO₃ in aqueous acid oxidizes aldehydes to carboxylic acids efficiently

$$CH_{3}CH_{2}CH_{2}CH_{2}CH \xrightarrow{CrO_{3}, H_{3}O^{+}} CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}COH$$

$$Hexanal \qquad Hexanoic acid (85%)$$

Hydration of Aldehydes

- Aldehyde oxidations occur through 1,1-diols ("hydrates")
- Reversible addition of water to the carbonyl group
- Aldehyde hydrate is oxidized to a carboxylic acid by usual reagents for alcohols

9.5 Nucleophilic Addition Reactions

- Nucleophile approaches to the plane of C=O and adds to C
- Nucleophiles can be negatively charged (:Nu⁻) or neutral (:Nu) at the reaction site

```
Some negatively
                                    Some neutral
charged nucleophiles
                                     nucleophiles
  (basic conditions)
                                  (acidic conditions)
        (hydroxide ion)
HO:
                                        (water)
H:
        (hydride ion)
                                   ROH
                                         (alcohol)
R<sub>3</sub>C:
        (carbanion)
                                  :NH<sub>3</sub> (ammonia)
                                   RNH<sub>2</sub> (amine)
        (alkoxide ion)
N≡C: (cyanide ion)
```

Mechanism

(a) Basic conditions

1 A negatively charged nucleophile: Nu⁻ adds to the electrophilic carbon and pushes π electrons from the C=O bond onto oxygen, giving an alkoxide ion.

2 The alkoxide ion is protonated, either by added acid H–A or by solvent, to give a neutral alcohol addition product.

Figure 9.2 General mechanism of a nucleophilic addition reaction of aldehydes and ketones under both basic and acidic conditions.

(b) Acidic conditions

- 1 The carbonyl oxygen is protonated by an acid H-A, making the carbon more strongly electrophilic.
- 2 A neutral nucleophile :Nu-H adds to the electrophilic carbon, pushing the π electrons from the C=O onto oxygen. The oxygen becomes neutral, and the nucleophile gains the + charge.
- 3 A base deprotonates the intermediate, giving the neutral alcohol addition product and regenerating the acid catalyst H-A.

9.6 Nucleophilic Addition of Hydride and Grignard Reagents: Alcohol Formation

Addition of Hydride Reagents: Reduction

- Convert C=O to CH-OH
- NaBH₄ reacts as a donor of hydride ion
- Protonation after addition yields the alcohol

Addition of Grignard Reagents

- Treatment of aldehydes or ketones with Grignard reagents yields an alcohol
 - Nucleophilic addition of the equivalent of a carbon anion, or carbanion. A carbon–magnesium bond is strongly polarized, so a Grignard reagent reacts for all practical purposes as R: MgX*

Mechanism of Addition of Grignard Reagents

- Nucleophilic addition of R:-, protonation by dilute acid yields the neutral alcohol
- Grignard additions are irreversible because a carbanion is not a leaving group

Limitations of Grignard Reagents

Grignard reagents can not be prepared from compounds that contain the following functional groups

$$\begin{array}{l} -\text{CHO}, -\text{COR}, -\text{CONR}_2, -\text{C} \equiv \text{N}, -\text{NO}_2, -\text{SO}_2 R \\ \end{array} \left. \begin{array}{l} \text{A Grignard reagent reacts with these groups.} \\ \\ -\text{OH}, -\text{NH}_2, -\text{NHR}, -\text{SH}, -\text{CO}_2 H \\ \end{array} \right. \\ \end{array} \right. \\ \begin{array}{l} \text{A Grignard reagent is protonated by these groups.} \\ \end{array}$$

→ Destroy the Grignard reagent by protonation

9.7 Nucleophilic Addition of H₂O: Hydrate Formation

- Aldehydes and ketones react with water to yield 1,1-diols (geminal (gem) diols)
- Hyrdation is reversible: a gem diol can eliminate water
- The position of the equilibrium depends on the structure of the carbonyl compound

$$C \longrightarrow H_2O \Longrightarrow C \longrightarrow OH$$

Aldehyde or ketone 99.9% Carbonyl hydrate (gem diol) 0.1%

Base-Catalyzed Addition of Water

- Addition of water is catalyzed by both acid and base
- The base-catalyzed hydration nucleophile is the hydroxide ion, which is a much stronger nucleophile than water

Acid-Catalyzed Addition of Water

Protonation of C=O makes it more electrophilic

9.8 Nucleophilic Addition of Alcohols: Acetal Formation

 Aldehydes and ketones undergo a reversible reaction with alcohols in the presence of an acid catalyst to yield acetal, R₂C(OR')₂, compounds that have two ether-like –OR groups bonded to the same carbon

- Alcohols are weak nucleophiles but acid promotes addition forming the conjugate acid of C=O
- Addition yields a hydroxy ether, called a hemiacetal; further reaction can occur
- Protonation of the –OH and loss of water leads to an oxonium ion, R₂C=OR+ to which a second alcohol adds to form the acetal
- All the steps during acetal formation are reversible

or ketone

Figure 9.3 Mechanism of formation of an acetal from a hemiacetal.

OCH₃ Hemiacetal 1 The -OH of the hemiacetal is protonated by an acid H-A, making it a good leaving group. 2 An electron pair on the -OCH₃ group moves toward carbon, expelling water and giving a $C=OCH_3$ bond with a positively charged, trivalent oxygen. :0-CH3 3 Nucleophilic addition of methanol to the C=O bond pushes the π electrons toward oxygen and neutralizes the positive charge. OCH₃ 4 Deprotonation by the base :A gives the neutral acetal and regenerates the acid catalyst. OCH₃ Acetal

Uses of Acetals

 Acetals can serve as protecting groups for aldehydes and ketones

Keto alcohol

28

 In nature, acetal and hemiacetal groups are particularly common in carbohydrate chemistry

9.9 Nucleophilic Addition of Amines: Imine Formation

 Ammonia and 1° amine, RNH₂, adds to C=O to form imines, R₂C=NR' (after loss of HOH)

 Imines are common intermediates in numerous biological pathway, including the route by which amino acids are synthesized and degraded in the body

An imine

31

Alanine

Pyridoxal phosphate

9.10 Conjugate Nucleophilic Reactions

Direct (1,2) addition

Conjugate (1,4) addition

- A nucleophile can add to the C=C double bond of an α,β -unsaturated aldehyde or ketone (conjugate addition, or 1,4 addition)
- The initial product is a resonance-stabilized enolate ion, which is then protonated

Conjugate Addition of Amines

• Amines add to α , β -unsaturated aldehydes and ketones to yield β -amino aldehydes or ketones

But-3-en-2-one

Conjugate addition product

 Conjugate additions are particularly common with amine nucleophiles and with water and occur in many biological pathways

cis-Aconitate

Isocitrate

 Addition of a nucleophile to the carbonyl carbon, called 1,2-addition, adds the elements of H and Nu across the C=O, forming an allylic alcohol.

 Addition of a nucleophile to the β carbon, called 1,4-addition or conjugate addition, forms a carbonyl compound.

1,4-Addition (conjugate addition)

The nucleophile attacks at the
$$\beta$$
 carbon.

[1]:Nu-

[2] H_2O

R

C

R

C

R

C

Nu

a carbonyl compound with a new substituent on the β carbon

Organolithium and Grignard reagents form 1,2-addition products.

Organocuprate reagents form 1,4-addition products.

Vitamin C

The industrial preparation of vitamin C involves an unusual blend of biological and laboratory organic chemistry

38

(ascorbic acid)