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Review
Glossary

Dominant inheritance: the situation wherein the allele inherited from one

parent exerts its influence irrespective of the allele inherited from the other

parent.

Epistasis: the interaction between genes. Epistasis occurs when the action of

one gene is modified by one or several other genes, which are sometimes

called modifier genes. The gene from which the phenotype is expressed is said

to be epistatic, whereas the phenotype that is altered or suppressed is said to

be hypostatic.

Flux profiling: evaluation of the rate of exchange of a labelled atom or atoms

through multiple biochemical pathways. An important complement to

metabolite profiling.

Metabolite profiling: the measurement of a broad range of metabolites within

a single extract.

Metabolomics: the measurement of the small molecular metabolite comple-

ment of the cell.

Overdominant inheritance: or best-parent heterosis – the situation in which the

offspring displays higher (or lower) levels of a trait than either of its parents.

Primary metabolism: encompasses essential reactions involving those com-

pounds that are formed as a part of the normal anabolic and catabolic

processes, which result in assimilation, respiration, transport and differentia-

tion processes that take place in most, if not all, cells of an organism.

Secondary metabolism: a compound is classified as a secondary metabolite if

it does not seem to directly function in the processes of growth and

development. Even though secondary compounds are a normal part of the

metabolism of an organism, they are often produced in specialized cells and
Metabolomics approaches enable the parallel assess-
ment of the levels of a broad range of metabolites and
have been documented to have great value in both
phenotyping and diagnostic analyses in plants. These
tools have recently been turned to evaluation of the
natural variance apparent in metabolite composition.
Here, we describe exciting progress made in the identi-
fication of the genetic determinants of plant chemical
composition, focussing on the application of metabolo-
mics strategies and their integration with other high-
throughput technologies. Metabolomics represents an
important addition to the tools currently employed in
genomics-assisted selection for crop improvement.

Breeding crop compositional quality
Although the improvement of crop species has been a
fundamental human pursuit since cultivation began some
ten thousand years ago, we have only recently developed
the capability to select for more than a handful of traits.
For this reason, both early domestication and modern
breeding activities imposed genetic bottlenecks; con-
sequently, cultivated varieties of plants contain only a
small fraction of the variation present in the gene pool.
The wild ancestors of most plant species can still be found
in their natural habitats and germplasm centres have been
set up worldwide to conserve these valuable resources in
the form of seed banks [1], providing a source of genetic
variation for crop improvement. This approach has been
much exploited as a source ofmonogenic traits (for reviews,
see Refs [2–4]), however, arguably it has been under-
exploited in the study of quantitative traits. The utility
of these seed banks was greatly enhanced by the wide-
spread development ofmolecular-marker techniques in the
early 1980s, which not only revolutionized plant breeding
but also greatly assisted basic research by facilitating the
introgression of defined genes or genomic regions fromwild
species or landraces.

Recent years have seen a dramatic increase in interest
in understanding natural variance in plants and a growing
number of research groups are using the introgression
approach to study complex traits influenced by quantitat-
ive trait loci (QTL). Many of these studies identified QTL
underlying yield (for example, see Refs [5,6]) or biotic and
abiotic stress resistance (for example, see Refs [7,8] and, for
recent reviews, see Refs [9–11]). Moreover, the spectacular
technical advances of the post-genomic era have brought
about a wealth of data, which enable us to elucidate
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associations between natural genetic and phenotypic vari-
ations in plants. Although many such studies have
focussed on the model species Arabidopsis thaliana, they
are increasingly being adopted in investigations in crop
species. The nutritional status of crop plants is ultimately
dependent on their metabolic composition and recent stu-
dies have highlighted the importance of compositional
quality of crops for human health [12]. In this review,
we focus on how the combination of genetic and metabolic
approaches has been used to improve crop nutritional
quality and evaluate the wider potential of this strategy.
Although high costs (estimated at between 15 and 400s
per sample, depending on the technique) currently limit
the use of metabolomic tools [13], they should be regarded
as an additional, rather than an alternative, route towards
crop improvement. Indeed, the costs for many post-geno-
mic profiling methods, including metabolomics (see Glos-
sary), are rapidly decreasing. Metabolomics is now an
order of magnitude cheaper than transcript profiling [14]
and is not reliant on having a pre-available genome
sequence [15]. Although our knowledge of the chemical
composition traits in plants usually lags behind that of
yield and biotic and abiotic resistance traits, recent
research in protein [16], oil [16,17] and provitamin A
content in maize [18], starch content in potato and rice,
tend to be more complex than primary compounds.
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Box 1. Metabolite profiling technologies

Two techniques dominate metabolite profiling strategies: (i) mass

spectrometry (MS); and (ii) nuclear magnetic resonance (NMR).

Metabolomics, or the more modestly termed metabolite profiling,

has been carried out since the mid 1970s [78], but only became a

standard laboratory technique in the past decade [79]. Here, we

focus on providing short definitions of the techniques and their

relative advantages and disadvantages.

Gas-chromatography-mass-spectrometry (GC-MS), gas-chroma-

tography-time-of-flight-mass-spectrometry (GC-TOF-MS) and li-

quid-chromatography-mass-spectrometry (LC-MS) are currently

the standard mass-spectrometry methods for metabolite analyses.

GC-MS technologies enable the identification and robust quantifica-

tion of a few hundred primary metabolites within a single extract

[80,81]. The main advantage of this instrument stems from the fact

that it has long been used for metabolite profiling and, therefore,

there are stable protocols for machine set-up, maintenance and

usage. GC-TOF-MS offers several advantages, most notably, fast

scan times, which give rise to either improved peak deconvolution

(the ability to resolve partially co-eluting peaks) or higher sample

throughput. Compared with GC-MS technologies, LC-MS offers

several distinct advantages, chiefly its adaptability to measure a far

broader range of metabolites encompassing both primary and

secondary metabolites [28,77]. However, LC-MS usually uses

electrospray ionization, which is prone to ion suppression (i.e. the

competition of co-eluting entities for ionization energy) making it

important to validate novel applications of this type of instrumenta-

tion. In addition to these machines, use of capillary-electrophoresis-

mass-spectrometry (CE-MS) and fourier-transform-ion-cyclotron-

resonance-mass-spectrometry (FT-ICR-MS) systems have been

demonstrated (for a review, see Ref. [82]). The first of these, CE–

MS, is a highly sensitive methodology that can detect low-

abundance metabolites and that provides good analyte separation,

whereas the second, FT-ICR–MS, relies solely on very high

resolution mass analysis, which potentially enables the measure-

ment of the empirical formula for thousands of metabolites,

however, it is somewhat limited by the lack of chromatographic

separation.

NNR approaches, which rely on the detection of magnetic nuclei

of atoms after application of a constant magnetic field, are the main

alternative to MS-based approaches for metabolite profiling [79].

These are well-developed and well-validated methods and the

computer software associated with NMR instrumentation is, conse-

quently, also advanced. Furthermore, despite limitations in its

sensitivity and, therefore, in metabolite coverage, it retains an

advantage over MS-based approaches for certain biological ques-

tions. For example, it can be used non-invasively (i.e. on living cells)

because the pH of the vacuole is different from that found elsewhere

in the cell. NMR can provide subcellular information and it is easier

to derive atomic information for flux modelling from NMR than from

MS-based approaches.
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and carotenoid content in tomato (for a review, see Ref.
[19]), has advanced the understanding of these traits. In
the past few years, rapid development of high-throughput
tools for metabolic profiling (the parallel detection of the
levels of multiple metabolites in a single extract; see Box 1
for details and Table 1 for an overview of technologies) has
facilitated the analysis of a broad range of metabolites.
Given that metabolic engineering in plants using targeted
reverse genetic approaches often has unanticipated con-
sequences, either on plant yield or on the levels of other
cellular metabolites, the ability to screen a wide range of
metabolites at once is very useful. Not only does this enable
the detection of unwanted traits but it also facilitates a
greater understanding of the metabolic network and how
this interacts with developmental phenotypes. This is
already true from the datasets acquired to date; however,
because most metabolomic approaches are unbiased, the
40
profiles they produce contain many unannotated peaks,
representing unknown metabolites. Therefore, it seems
likely that the power of metabolomics as a platform for
the selection of breeding material can only improve. Owing
to the increasing availability of immortalised plant popu-
lations, the acceleration in mapping and sequencing tech-
niques and the decreasing unit cost of metabolomics-based
phenotyping, a compelling argument can be made for the
adoption of metabolomics as an integral component in
plant breeding programs (see Figure 1 for a typical
example).

Emerging data from a range of model and crop species
are facilitating a better understanding of plant metabolic
networks and are starting to uncover mechanisms of inter-
action between metabolism and development. Although
metabolomics is a new scientific field (Box 1 and
Table 1), a large amount of data have already been pub-
lished on its application to widely divergent genetic popu-
lations. These data include assessments of the relative
contribution of genotype and environment on metabolite
composition, analyses of metabolite heritability and the
integration of metabolite data with morphological pheno-
typing. Perhaps most excitingly, these recent studies
demonstrate that, by using hybrid material, the contents
of certain metabolites can be enhanced by a mechanism
that does not invoke a yield penalty. Together with the
recent advances in sequencing and transcript profiling
(Boxes 2 and 3), the integration of data from several
different genomics platforms is becoming economically
feasible within a single project. Our focus is the potential
of metabolomics in genomics-assisted breeding. We begin
by selecting recent and historic success stories in which
single chemical composition traits have been successfully
bred.

Improving crop composition one metabolite at a time
Owing to technical limitations, researchers traditionally
focused on a single or, at most, a handful of metabolic traits
that were of greatest importance either for industrial or
nutritional value. Prime examples of these targeted
approaches include carotenoid content of tomato, protein
content of maize and starch content of potato and rice (see
Refs [16,19,20]). Researchers also focussed on simplemeta-
bolic processes, such as cold-sweetening in potato [21].
Perhaps the best example for a long-term program at
improvement of crop compositional quality is the Illinois
long-term selection experiment for protein and oil content
in maize (http://www.ideals.uiuc.edu/handle/2142/3524),
which began in 1896. Indeed, this experiment is arguably
the longest continuous genetic experiment, comprising
>100 cycles of selection and producing nine related
maize populations with phenotypic extremes for grain
composition [16]. These populations contain the known
phenotypic extremes for maize kernel composition (i.e.
individuals displaying the lowest and highest levels of
either protein or oil) and are still used in current breeding
programs as a favourable source of alleles associated
with oil, protein and starch content. More recently, a
combination of QTL map-based cloning, transgenesis
and associationmapping has been used to reveal the amino
acid of the enzyme acyl-CoA:diacylglycerol acyltransferase

http://www.ideals.uiuc.edu/handle/2142/3524


Box 2. The utility of ‘next generation’ sequencing

technology

The past few years have seen several advances in sequencing

technology, including the development of massively parallel sequen-

cing [83]. Although it took>10 years to sequence the human genome,

complete genome sequencing can now be performed in a few

months. Traditional Sanger-based sequencing relies on the cloning

and amplification of the DNA. The future promises faster and more

sensitive whole genome sequencing technologies, the so-called ‘next

generation’ sequencing, including single-molecule sequencing, se-

quencing by synthesis, by ligation and the even more futuristic

method of nanopore sequencing [84]. Nanopore sequencing uses a

single DNA molecule without the need of amplification and cloning.

Although this technology is promising, it will take a few more years

until it is used more widely by researchers. Sequencing costs are

considerable, although it cost �$3billion to sequence the first human

genome, the sequencing of James Watson’s genome cost only

$1million and latest estimates for a human genome sequence are

$60K with a six week completion time (http://press.appliedbiosys-

tems.com/corpcomm/applerapress.nsf /ABIDisplayPress/

F426CD6F553255C2882574090082573E?OpenDocumentandtype=

abi). The era of $1000 whole genome sequencing seems to be upon us

and techniques relying on 5–200 base pair, instead of single base pair,

detection will probably rapidly accelerate sequencing and, thus,

enable us to access the genetic basis of metabolomics associated

traits much more rapidly than currently. It is perhaps the parallel

development of both technologies that renders the incorporation of

metabolomics within genome-assisted breeding strategies feasible.

In plant breeding, marker-assisted selection (MAS) employs

restriction fragment length polymorphism (RFLP), cleaved amplified

polymorphic sequences (CAPS), amplified fragment length poly-

morphism (AFLP) or single sequence repeat (SSR) markers to track

traits of interests. For the differentiation between two different

alleles, single nucleotide polymorphism (SNP) markers are highly

informative and easy to develop once the polymorphic region has

been identified. SNP detection is somewhat limited in sample

throughput. The use of PCR and proprietary systems such as

SNPWaveTM (Keygene BV; http://www.keygene.com/keygene-pro-

ducts) can allow multiplex assays. However, advances in sequen-

cing technologies enable the detection of thousand of SNPs in a

single short run. Recent ‘proof-of-concept’ studies used 454

sequencing to discover genome wide transcriptomic SNPs in maize

[85] and eucalyptus [86]. These studies revealed that the advances in

sequence technologies can greatly enhance marker-assisted selec-

tion, although the costs are currently prohibitively high. However, if

the expense is overcome, breeding strategies will almost certainly

shift from single molecular marker analyses to sequencing-assisted

breeding (SAB) to maximize control of trait segregation and hybrid

purity. Thus, it seems highly likely that the association of metabolic

trait properties to their underlying genetic basis will be dramatically

accelerated by the combination of this approach the application of

metabolomics strategies.

Box 3. Transcriptomic approaches

The investigation of the total transcript content of a biological

sample, known as transcriptomics, enables the detection of changes

in transcript levels between different conditions and can, thus, be

used in an attempt to identify mechanisms underlying quantitative

variation in traits. The recent employment of microarray technology

to identify genomic regions in whole-genome-covering RIL popula-

tions facilitates the identification of expression QTLs (eQTLs)

controlling the transcript levels for individual genes. These loci

can reside very close to the gene (e.g. in the promoter region) or

near a transcription factor on another chromosome. In combination

with phenotypic or metabolic studies, this integrated approach can

facilitate the identification of genomic factors responsible for

metabolic, yield, stress or disease resistance QTL. For example,

Rowe et al. [87] integrated metabolic QTL analysis with eQTL studies

in an Arabidopsis RIL population to identify a new regulatory myb

factor subfamily for glucosinolate biosynthesis. A recent study of

two barley varieties revealed >2000 polymorphic regions and

extending the study to a 136 line double haploid population

genome wide eQTL analysis exposed >23K eQTL affecting 16K

genes [88]. A similar study to explore genes underlying resistance to

wheat stem rust in barley by integration of disease resistance data

revealed six major loci [89]. Two of these loci were already known to

be determinants for stem rust resistance, but one of the four novel

loci provided a very strong candidate gene encoding a histidine

kinase which, therefore, represents a good target for crop improve-

ment

Tiling arrays that cover the whole genome can detect changes

even in untranslated regions of the genome. Zeller et al. [90] have

used this approach to detect polymorphic regions in a comparative

proof-of-concept study of twenty Arabidopsis accessions, whereas

Zhang et al. [91] have used tiling arrays to assess genetic, epigenetic

and transcriptional polymorphism in Arabidopsis. There are many

potential applications of tiling arrays but, for crop breeding, whole

genome polymorphism discovery is by far the most interesting.

Microarrays can be used to detect polymorphic regions in the

transcriptome, even in moderately sized genomes such as Arabi-

dopsis. Marker-assisted selection is of crucial importance in

modern-day breeding. The increase in SNP-based markers is

leading to bottlenecks in throughput and costs of genotyping.

Recent studies have shown the applicability of microarrays for

mapping a large number of SNPs [92,93].
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responsible for determining oil content and composition in
maize [17]. In a similar approach, albeit one that did not
rely on association mapping, screening of a tomato intro-
gression line population harbouring introgression of the
wild species Solanum pennellii resulted in the identifi-
cation of multiple QTL for total soluble solid content.
One of these introgression lines (Brix9-2-5), was delimited
to a single base-pair change in LIN5, an apoplastic inver-
tase coding sequence and the line containing the allele
from the wild species had a greater ability to bind sucrose
and, hence, an increased sugar yield [22,23]. The tomato
hybrid AB2 harbours a QTL from S. pennellii and is
currently a leading processing variety. Another interesting
example of is the recent identification, by association
mapping, of lycopene e cyclase as a key determinant of
provitamin A levels in maize. This finding is particularly
pertinent given the severe health disorders that result
from vitamin A deficiency. Two of these strategies were
at least partially reliant on association mapping, whereas
as yet, no metabolomics studies have been published that
have adopted this approach, the genetic determinants of
many traits have nevertheless been detected using con-
ventional map-based strategies.

An expanding catalogue of metabolite QTL
In the past few years, researchers have begun to use
pathway-based approaches to identify the genetic deter-
minants of crop compositional quality in several plant
species. These approaches have led to a detailed dissection
and an increase in our understanding of glucosinolate
biosynthesis [24], seed oil synthesis [25] and oligosacchar-
ine metabolism [26] in Arabidopsis and flavonoid biosyn-
thesis inArabidopsis [27,28], tomato [29] and Populus [30].
Furthermore, in the past two years, several studies have
been carried out at the metabolomic level in Arabidopsis,
tomato, wheat, rice, sesame, broccoli and mustard [31–41],
which have lead to a far richer description of the natural
variation of chemical composition in these species facil-
itating the identification of importance sources of allelic
41
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Table 1. Common and envisaged technologies in metabolite profilinga

Technology Application Properties

GC-MS Analyses of polar or lipophilic

compounds (e.g. sugars, organic acids,

tocopherols, vitamins).

Accuracy: <50 ppm

Mass range: <350 Da

GC � GC-MS Similar to GC-MS, but with better

separation of co-eluting compounds and

increased sensitivity owing to GC � GC.

Accuracy: <50 ppm

Mass range: <350 Da

SPME GC-MS Analyses of volatile compounds (e.g.

aroma components, repellents).

Accuracy: <50 ppm

Mass range: <350 Da

CE-MS Analyses of polar compounds (e.g.

amino acids, CoA-Derivates, sugars,

organic acids, tocopherols, vitamins).

Accuracy: <50 ppm

Mass range: <1000 Da

LC-MS Analyses of mainly secondary

metabolites (e.g. carotenoids, flavonoids,

glucosinolates, vitamins).

Accuracy: 50–100 ppm

Mass range: <1500 Da

FT-ICR-MS High-resolution MS in combination with

LC is highly powerful. Enables the

identification of unknown metabolites by

m/z mass to charge ratio.

Accuracy: <1 ppm

Mass range: <1500 Da

NMR Non destructive analyses of abundant

metabolites in a sample.

Mass range: <�50 kDa

Direct-injection-MS Non separative technique giving a

fingerprint of the metabolic content in a

biological sample.

Accuracy: 50–100 ppm

Mass range: <1500 Da

FAIMS-MS Next generation hyphenation technology

to MS. Enables selection of specific ions,

reducing ion suppression and matrix

effects. FAIMS enables the separation of

isobaric compounds in combination with

selective MS.

Accuracy: 50–100 ppm

Mass range: <1500 Da

aAbbreviations: Da, Dalton; FT-ICR, fourier transform ion-cyclotron resonance; FAIMS, field asymmetric waveform ion mobility spectrometry; ppm, parts per million; SPME,

solid phase micro extraction.
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variance for metabolic engineering (for a relevant over-
view, see Table 2).

The studies on Arabidopsis were based on three inde-
pendent recombinant inbred line populations and demon-
strated wide natural variation in both primary [32–34] and
secondary [31] metabolism. Keurentjes et al. [31] focussed
Figure 1. Profiling large populations to define novel metabolic QTL. Combining metab

diverse populations (e.g. tomatoes) with an integrated bioinformatics platform will fac

interest. This schema serves to display how multiparallel metabolite and transcript pro

42
on the analysis of a Landsberg erecta (Ler) � Cape Verdi
Islands (Cvi) recombinant inbred line (RIL) population and
examined parental lines of a further 12 accessions. By
profiling leaf material from these samples using an untar-
geted liquid chromatography mass spectrometry (LC-MS)
method, they revealed a large quantitative variation in
olomics, transcriptomics analysis and extensive phenotyping of large, genetically

ilitate the identification of novel mQTL and the underlying genetics of the trait of

filing will probably inform future breeding strategies.



Table 2. Overview of crop studies employing metabolite profiling

Crop Main findings Refs

Barley P-deficiency in barley leads to shifts in carbohydrate metabolism, a reduction in organic acids and P-containing metabolites.

Shifting carbohydrates into amino and organic acid metabolism could lead to more efficient use of carbon under P-stress.

[75]

Corn Targeted metabolite profiling revealed gene versus environmental effects in a set of corn hybrids and the influence of

water stress on metabolite content.

[38,46]

Cucumis

sp.

Combined transcript and metabolite profiling elucidated QTL involved in spider-mite-induced volatile biosynthesis

in cucumber.

[76]

Potato Genetic modification or environmental perturbations of potato plants result large effects on potato tubers composition. [81]

Rice Application of 2D GC-MS for the identification of natural variation on the metabolic level in 70 rice varieties revealed

large metabolic differences between cultivars.

[39]

Tomato Comprehensive metabolite profiling of a tomato introgression line library enables the identification of >880 mQTL

and the mode of inheritance of those QTL.

[35,36]
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metabolism and showed that there were also qualitative
differences in the range of metabolites present in the
accessions. In addition, this study not only enabled an
evaluation of the genetic architecture of aliphatic glucosi-
nolate accumulation in Arabidopsis but also enabled infer-
ence of the structure of the underlying pathways. This
work produced a very nice complement to early work in
Arabidopsis in the groups of RichardMithen and Jonathon
Gershezhon (for example, see Refs [42] and [43]) and to
subsequent work in broccoli and mustard [41]. These stu-
dies should, thus, aid in the selection of breeding lines that
could potentiate the development of plants containing
compounds that inhibit carcinogenesis.

By contrast, Meyer et al. [32] used gas chromatography
mass-spectrometry (GC-MS) to study the primary metab-
olism of Columbia (Col) � C24 RIL population. Although
no single primary metabolite displayed a strong corre-
lation with plant biomass, Meyer et al. [32] identified a
metabolic signature composed of contributions from var-
ious metabolites. Further studies on the QTL in the RIL
population and in an introgression line (IL) population
derived from the same parental accession led to the identi-
fication of six biomass QTL and 157 metabolic OTL. Two of
the biomass QTL coincide with significantly more meta-
bolic QTL (mQTL) than statistically expected, supporting
the notion that the metabolic profile and biomass accumu-
lation of a plant are linked. Furthermore, three of the six
biomass QTL could be mathematically predicted based
purely on their metabolite composition. More recently, a
similar study was published on the RIL population result-
ing from a Bayreuth-0 (Bay) � Shahdara (Sha) cross [34].
This study, which was based on two independent exper-
iments and enabled evaluation of the hereditability of
mQTL in comparison to those of eQTL determined for
the same samples (Box 2), found that the mQTL tended
to be less heritable than the eQTL.

Moreover, statistical analyses of the data revealed that
numerous mQTL displaying a moderate phenotypic effect
frequently had most of their variation controlled by epi-
static interactions, thereby enabling the generation and
evaluation of network models that might help elucidate
poorly defined metabolic pathways, such as those involved
in the synthesis of important plant volatiles and hormones.

Identifying metabolite QTL – moving from model
species to crops
Not surprisingly, the most extensive studies on metabolo-
mic natural variation have been conducted in Arabidopsis.
However, increasingly, crop species have become the focus
of metabolomic approaches. Astonishingly, many of these
crop studies have been carried out on material from a
single harvest [39–41,44], which makes it impossible to
discriminate the effects of genotype from those of environ-
ment. However, these first ‘proof-of-concept’ investigations
have provided important information about the natural
diversity of metabolism.

Single harvest studies

Studies on rice, the staple food of almost half the world’s
population, which furthermore provides three-quarters of
the calorific intake of inhabitants of Asia [45], are particu-
larly pertinent for world agriculture. In 2007, Kusano et al.
[39] profiled 70 rice cultivars (including 68 of the rice world
core collection; http://www.shigen.nig.ac.jp/rice/oryzabase/
wild/coreCollection.jsp) using a combination of 1D and 2D
GC coupled to MS, yielding a highly accurate inventory of
the nutritional value of these cultivars.

In a similar, albeit smaller-scale study, Laurentin and
co-workers used a combination of high-performance
liquid chromatography (HPLC) and amplified fragment
length polymorphism (AFLP) to determine the relation-
ship between genetic and metabolic diversity in sesame
[40]. Intriguingly, this study demonstrated that there
was a large difference in the patterns of diversity at the
genomic and metabolic levels, indicating that they were
not tightly associated to one another. On the one hand,
this observation, like that of the low heritability of the
metabolome, argues against metabolomics as a means of
selection. On the other hand, given that yield traits with
a heritability of �10% have been successfully incorpor-
ated into breeding programs, the fact that metabolite
heritabilities of 25–35% are commonly estimated bodes
well for the addition of this technique in future breeding
strategies.

In tomato, screening of carotenoid metabolites by
matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI-TOF-MS) was recently
demonstrated to be useful for the screening of large popu-
lations. For this purpose, selected lines from two tomato
populations (S. pennellii introgression lines and saturated
mutants) were profiled to identify germplasm that is likely
to be of high utility in the breeding of fruit containing high
levels of these important nutriceuticals [44]. In addition to
the health-promoting properties of certain anti-oxidant
isoprenoids, such as carotenoids and vitamin E, the
value in identifying and quantifying isoprenoids is also
43
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illustrated by the fact that they are an important target
site for bleaching herbicides.

Multiple harvest studies

The metabolomic approach has also been performed in
material from multi-harvest crops. A wide range of com-
positional traits including protein and oil contents, fatty
acid, amino acid and organic acid content were analysed in
three maize hybrids grown at three separate locations [46].
A broad profiling of tomato volatiles, which are extremely
important flavour components, in a population of 74 Sola-
num lycopersicum � S. pennellii ILs yielded 100 QTL that
were conserved across harvests [47]. Physiological studies
on two of these volatiles – 2-phenylethanol and 2-pheny-
lacetaldehyde – used a combination of metabolic and flux
profiling alongside reverse genetic studies to confirm the
biological pathway of these important aromatic compounds
in tomato [48]. Similar, albeit not so extensive, studies
have been carried out using intraspecific crosses of S.
lycopersicum [49], documenting the levels of a subset of
the most important volatile components of the fruit and
defining a range of QTL for them. Studies in our laboratory
on the same S. pennellii ILs described, using an estab-
lished GC-MS method [36] over two independent harvests,
resulted in the identification of 889 QTL governing the
accumulation of 74 metabolites, including important
primary metabolites, such as sugars, organic acids, essen-
tial amino acids, intermediate metabolites and vitamins.
Although in many cases the metabolite content was
increased, this was often associated with a yield penalty.
To find out whether these traits were heritable, we grew
the S. penellii ILs for a third harvest, alongside lines that
were heterozygous for the introgression (ILHs), enabling
the evaluation of hereditability and the QTL mode of
inheritance [35]. These studies revealed that the mean
hereditability of the metabolite QTL was of a range that
would be regarded as intermediate (i.e. between 0.20 and
0.35 – as was also found in Arabidopsis [34]). However, a
handful of the traits were nevertheless highly correlated
and displayed reasonable heritability (a mean r of between
0.3 and 0.69). A similar finding was observed in the maize
study, which revealed a great influence of environment on
the metabolite profiles of three genotypes studied [46]. The
comparative study of the tomato IL and ILHs, however,
revealed that most of the metabolic QTL were dominantly
inherited with a considerable number displaying an addi-
tive or recessive mode of action and only a negligible
amount displaying the characteristics of overdominant
inheritance. Interestingly, the mode of inheritance was
quantitatively different between diverse classes of com-
pounds with, for example, sugars and acids displaying
significantly different patterns of inheritance. Moreover,
several metabolite pairs belonging to the same pathway
displayed a similar mode of inheritance at the same chro-
mosomal loci, indicating that the variation in both metab-
olites is probably mediated by enzymes involved in their
interconversion. However, the association between
morphological and metabolic traits was far less prominent
in the ILHs than in the ILs, which haswide implications for
breeding strategies. The possibility of uncoupling
enhanced metabolite content from any penalties with
44
respect to plant performance and fecundity and redevelop-
ment of hybrid genetic material could prove an important
advance in the use of genomics-driven breeding
approaches.

Integration with other profiling data

Integrating results from metabolic and morphological
profiling proves to be a powerful strategy for crop im-
provement. Several recent studies have illustrated the
utility of combining data from metabolomics with that
from other genomics platforms to provide new insights
on both gene annotation [50–53] and regulation in complex
biological systems [54–56]. These approaches have
resulted in the identification of numerous candidate genes
including several in which expression correlates strongly
with the levels of metabolites with important nutritional
or organoleptic properties. To date, use of this approach
on populations of wide genetic diversity has been
restricted to Arabidopsis concentrating on the Bay � Sha
Sha and Ler � Cvi RILs described earlier. Both of these
populations were analysed by a combination of metabo-
lomic and expression profiling [57,58] (Box 2) and the
Ler � Cvi RILs were also analysed by enzymatic profiling
[59]. These analyses revealed the full complexity of inter-
action across the various levels of cellular organization
and, thus, the full scale of the challenge of engineering
plants by targeted methods.

Evaluation of the Bay � Sha data was focussed on the
aliphatic and indole pathways of glucosinolate biosyn-
thesis and revealed that all loci controlling expression
variation also affected the accumulation of the resulting
metabolites and that epistasis was more apparent for the
metabolic traits than the expression traits. Furthermore,
the analysis indicated that, although natural variation in
transcripts can significantly impact phenotypic variation,
the natural variation in metabolites or the enzymatic loci
that correspond to them can feedback to affect the tran-
scripts [60]. Similar conclusions were made following the
analysis of the integrated data relating to the central
primary metabolism of the Col � Cvi RILs. The additional
data provided at the enzymatic level revealed many
examples of the complex circuitry governing metabolism
[59]. Similarly to the Bay � Sha results, the natural vari-
ation in plant primary metabolism could be attributed to
allelic differences in structural genes of catalytic enzymes
such as those involved in glucosinolate biosynthesis, by the
identification of regulatory loci or via metabolic signalling.
The increasing availability and interest in cross-laboratory
phenotyping of immortalised populations of both model
and crop species [22,61–63] promises to be of great help in
defining both the genetic and physiological mechanisms
underlying trait variance, thereby rendering emergent
QTL database resources [64,65] essential if we are to
maximise the opportunities afforded us by these rich data-
sets. However, mining data for correlations only enables us
to conclude that the variance in two traits is associated; we
need to clone the QTL to understand the mechanisms by
which these changes are brought.Most of theQTLs already
cloned displayed major (dominant) effects and were ident-
ified in wide crosses (see Ref. [66] for a recent review).
Recent developments in genetic and molecular biological



Figure 2. Breeding technology pipeline from past to present to future. The breeding pipeline from 1980 to that envisaged in 2020. In the past, trait discovery was mainly

based on phenotypic observations, whereas marker development was restricted to phenotypic or enzymatic or protein markers. Thus, trait mapping and elite line

development was a laborious task. The technological advances of molecular biology in the 1980s and 1990s enabled the application of molecular markers and improved the

speed of trait mapping and commercial material development. Today, the application of marker-assisted selection in combination with new -omics approaches, such as

metabolomics or transcriptomics (e.g. eQTL studies) enabled rapid discovery of new traits and allelic variation and, thus, improves the time to market by several years. In

the future, the progress in trait discovery tools, plus simultaneous whole genome sequencing for marker development and trait mapping should shorten the market

introduction of new varieties to �4–5 years. Abbreviations: SNP, single nucleotide polymorphism.

Review Trends in Genetics Vol.25 No.1
platforms (Box 4) should greatly accelerate this cloning
process.

Combining metabolomics and association mapping
Association mapping has only recently been adopted in
plant genetic research (for a review, see Ref. [67]) and it has
been used for a few traits relevant to chemical composition
research [18,68–71]. However, given the potential of this
approach, particularly now that sequencing costs are
rapidly decreasing (Box 2), it certainly should be con-
sidered within the wider context discussed in this article.
Suchmapping approaches have recently pinpointed associ-
ations between genomic regions of maize and kernel com-
position as well as starch content in potatoes, pigment
content in tomato and provitamin A content in maize [68–

70,72,73]. However, as yet, the number of cultivars or
accessions that have been examined at high-throughput
within a single study is limited. Several prototype studies
assessing the combination of association mapping at the
metabolomic level are currently underway worldwide. By
and large, these approaches all adopt the same strategies
as the studies already described, but they are carried out
on a far greater number of genetically variant individuals.
The success of the targeted metabolite approaches
indicates that metabolomics studies could greatly benefit
from the advantages afforded by a multiparallel approach
because this would probably encompass the use of a higher
mapping resolution, a greater allele number and a reduced
time span to establish association as opposed to linkage
analysis [67]. It seems likely to be only a matter of time
before the efficacy of such strategies can be effectively
assessed.

Concluding remarks and future perspectives
We have highlighted the current status of metabolomics in
the assessment of broad genetic variance and focussed on
45



Box 4. RNAi and miRNA approaches to breeding

Recent advances in our understanding of native gene silencing have

facilitated the adoption of more rapid reverse genetic strategies,

such as those afforded by functional testing of alleles. Both small

interference RNAs (siRNAs) and microRNAs (miRNAs) have a

pivotal role in gene silencing [94], with miRNAs being able to

inactivate either specific genes or entire gene families. When

brought into a plant, artificial miRNAs function as dominant

suppressors of gene activity and these approaches have recently

become a focus of crop researchers and commercial agricultural

companies. For example, Warthmann and co-workers have recently

designed artificial miRNAs (amiRNAs) to study agricultural impor-

tant genes in rice [95]. The authors targeted a phytoene desaturase,

which causes an albino phenotype, a GA20 oxidase, which results in

dwarfism, and a gene encoding a phytochrome P450 monooxygen-

ase, which results in an elongated upper internode. For each gene,

two amiRNA constructs were designed to elucidate the importance

of sequence properties to effectively silence gene expression. RNAi

has also been used to silence the first step of flavonoid biosynthesis,

which resulted in parthenocarpic tomato fruits [96]. Parthenocarpy

leads to seedless fruits and is, thus, a highly desirable trait in crop

plants for the consumer and for the seed provider. Recently,

Monsanto and colleagues have developed a transgenic system

based on RNAi to control insects [97]. In this study, the authors used

RNAi as an enabling technology to control colopteran insects, such

as root worms. This technology is highly likely to be implemented in

breeding programs in the near-future.
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its potential role in informing breeding strategies.
Although the cost and the extent of heritability need to
be taken into account, the vast amount of knowledge
accrued over a few years argues that this approach should
be continued and extended. The shift from single metab-
olite measurements to platforms that can provide infor-
mation on hundreds of metabolites has led to the
development of better models to describe the links both
within metabolism itself and between metabolism and
yield-associated traits. The use of hybridsmakes it possible
to engineer plants that produce high levels of metabolites
without accruing a yield penalty. The ongoing efforts to
elucidate the metabolic response to biotic and abiotic
stresses indicate that metabolomics-assisted breeding
might also be useful in the development of crops that
are more resistant to these stresses. The application of
post-genomics tools should accelerate the selection process
(Figure 2) and the combined use of metabolomics, genome
sequencing and high-throughput reverse genetics (Box 4)
will probably considerably shorten the time required for
the production of elite lines. For this reason, we strongly
believe that metabolomics-assisted breeding [74] can be
applied to crop species in a similar manner to that which
has already proven successful in breeding programs to
increase disease resistance and herbicide or salinity toler-
ance [2,3,10] and which is certainly a viable option for crop
improvement.
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One of themost remarkable biological insights in the
past 30 years has been that many genetic programs for
complex traits, such as flower or limb development,
are shared across broad groups of organisms. These
conserved pathways in turn can be tuned to produce
tremendous phenotypic differences, not only between,
but also within species. Intraspecific variation is often
quantitative, one example being the onset of flowering,
although there is also qualitative variation, such as in
the ability to resist pathogens.

While many tools for quantitative genetics were
developed by breeders, the model plant Arabidopsis
(Arabidopsis thaliana) was adopted for studying the
genetic architecture of quantitative traits soon after
molecular markers for mapping became available
(Chang et al., 1988; Nam et al., 1989). The species belongs
to a small genuswith ninemembers. Different frommost
of its congeners, Arabidopsis is self-compatible, and its
life cycle can be as short as 6 weeks, both properties that
greatly facilitate genetic studies. Its native range is
considered to be continental Eurasia and North Africa
(Al-Shehbaz and O’Kane, 2002), but it has been intro-
duced throughout much of the rest of the world,
especially around the northern hemisphere.

The potential of genetic variation to inform many
different areas of Arabidopsis biology wasmost strongly
advocated by Maarten Koornneef and his students.
From the mid-1990s, they published both an impres-
sive number of original research articles on this subject
and a series of influential review articles that adver-
tised the impact that the study of natural genetic
variation could have on questions of both develop-
ment and physiology (Alonso-Blanco and Koornneef,
2000; Koornneef et al., 2004).

Today, the study of natural variation in Arabidopsis
continues to reveal new biology. In addition, the entire

genus is increasingly being used to address funda-
mental questions of evolution (Mitchell-Olds and
Schmitt, 2006; Bergelson and Roux, 2010). Some of
the problems studied are: How, and how frequently,
do new variants arise? Why do some variants rise to
high frequency, while others are eliminated? And why
are certain combinations of new variants incompatible
with each other? Here, I will first give an overview of
the tools and resources available for the study of natu-
ral variation in Arabidopsis. Next, I will present a few
examples of how our knowledge of important biolog-
ical processes has been improved through insights
obtained from varieties other than the common labora-
tory accessions. Where similar or contrasting findings
have been made in other species of the Brassicaceae, to
which Arabidopsis belongs, I will mention these. The
article concludes with a discussion of recent work that
aims to integrate evolutionary and ecological studies
with functional tests.

A final introductory note: Natural accessions of
Arabidopsis have in the past often been referred to
as “ecotypes.” This term implies that a line has a
unique ecology and is adapted to specific environ-
ments, as opposed to differing only in genotype from
other varieties (Turesson, 1922b). Preferable is the
neutral term accession, which merely means that a
unique identifier in a collection has been assigned
(Alonso-Blanco and Koornneef, 2000).

GENETIC TOOL KIT FOR THE STUDY OF
NATURAL VARIATION

Experimental Populations for Genetic Mapping

Accessions of Arabidopsis vary in a number of traits
(Fig. 1; Table I). The most general way to identify genes
is by crossing two accessions, which may or may not
have a different phenotype, but produce nonuniform
F2 progeny. In the F2 or later generations, specific
phenotypes are then associated with segregating ge-
netic markers that distinguish the contributions from
the parental genomes. When phenotypic classes are
not discrete, this is done using the methods of quan-
titative trait locus (QTL) mapping (Falconer and
Mackay, 1996).

Because marker analysis used to be very tedious and
expensive, substantial efforts were invested early on
into producing recombinant inbred lines (RILs), which
constitute immortal populations in which recombi-
nant chromosomes have been fixed through inbreed-
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ing (Reiter et al., 1992; Lister and Dean, 1993; Fig. 2).
RILs, which were first developed in mice (Bailey,
1971), have the advantage that they need to be geno-
typed only once but can be phenotyped repeatedly for
many different traits and under different environmental
conditions. An advantage of Arabidopsis is its self-
compatibility, so that inbred lines can be easily gener-
ated by selfing and single-seed descent. Around 60 RIL
populations are available from the stock centers as of
the time this article is written (end of 2011; http://
www.inra.fr/internet/Produits/vast/RILs.htm, http://
www.arabidopsis.org/ and http://www.arabidopsis.
info/). Importantly, the lengthy inbreeding process
can now be bypassed through a revolutionary tech-
nology introduced by the laboratory of Simon Chan.
This method allows the facile production of doubled
haploid plants from recombinant populations (Ravi
and Chan, 2010).
Even after five or six generations of inbreeding,

which is customary for RILs, a small percent of the

genome remains heterozygous. This turns out to have
its own benefits. In such a heterogeneous inbred family
(HIF), only a small portion of the genome segregates
for the two parental alleles (Tuinstra et al., 1997).
Additional recombinants that further reduce an interval
of interest are easily derived from heterozygous HIF
individuals, as are near isogenic lines (NILs) that are
homozygous for either parental allele at this locus. A
disadvantage of HIF-derived NILs is that each HIF has
a unique genome composition and that one can there-
fore not easily place several QTL in a common genetic
background.

NILs that carry only a small genomic region from
one parent in a background that is otherwise com-
posed of the genome of the other parent can also be
generated directly by repeated backcrosses (Fig. 2).
Such NILs, pioneered in crops where they are also
called introgression lines (Seevers et al., 1971; Rhodes
et al., 1989; Eshed and Zamir, 1995), are powerful for
systematic analyses of interactions between genes
from different genomes, although epistatic interac-
tions among alleles from the introgressed genome are
mostly lost. The properties of NIL sets are in many
ways complementary to those of RILs, and they are
particularly useful when introgression is performed
in two directions (Törjék et al., 2008). NILs can iden-
tify QTL of smaller effect but with lower resolution
than RIL populations (Falconer and Mackay, 1996;
Keurentjes et al., 2007).

Although the genomes of RILs already contain more
recombination events than F2 populations and there-
fore afford higher mapping resolution, this can be
further increased with advanced intercross RILs, in
which individuals from the F2 and later generations
are intermated before inbred lines are derived (Darvasi
and Soller, 1995; Balasubramanian et al., 2009). Other
approaches involve the use of multiple parents, as
in the MAGIC (for multiple advanced generation
intercross) and AMPRIL (for Arabidopsis multiparent
RIL) populations (Fig. 2; Kover et al., 2009; Huang
et al., 2011). The MAGIC design is more elaborate
and generates more recombination events per line
than the AMPRIL strategy, but the founder genomes
are less evenly represented in the final lines. Mapping
in either population is more complex than with RILs,
but with a sufficiently high density of intermediate
frequency markers, one can infer the most likely local
founder genotype. Even more so than simple F2 or
RIL populations, AMPRILs and MAGIC lines are
likely to contain genotypic combination not found
in the wild.

QTL mapping accuracy increases with the MAGIC
and AMPRIL populations, but not all possible QTL
that can be found in pairwise crosses between some of
the parents are detected. An alternative would be to
combine the most informative subsets of RIL popula-
tions and to perform a joint QTL analysis. Especially
when genotyped with common markers, a joint anal-
ysis can confirm common QTL (Bentsink et al., 2010;
Salomé et al., 2011b).

Figure 1. Gross morphological variation in Arabidopsis and relatives.
A, Variation between Arabidopsis accessions. On top, vegetative
rosettes of accessions grown for 4 weeks in long days are shown.
They vary in rosette diameter and compactness, leaf shape, and tissue
necrosis or onset of senescence. Similarly, variation in size and shape of
individual leaves, in this case the sixth in the rosette, is apparent in the
10 examples shown on the bottom left. Finally, differences in overall
architecture are illustrated with five plants. On the left is an early
flowering accession with few rosette leaves. The next two flower later,
but the second one from the left has reduced apical dominance. Finally,
the two accessions on the right have similarly tall main inflorescences
but differ in the number of secondary inflorescences. The appearance on
the far right is common among wild-grown plants. B, Some characters,
such as flower size and fruit shape, vary relatively little within Arabi-
dopsis, but more dramatic variation is found in comparison with closely
related taxa, such as Capsella rubella (left) and A. lyrata (right). Images
courtesy of Eunyoung Chae, Sang-Tae Kim, and George Wang.

Natural Variation in Arabidopsis

Plant Physiol. Vol. 158, 2012 3



Some of the advantages of using RIL-type popula-
tions will continue to apply in the future. Trait values,
especially those with low heritability, can be estimated
more precisely due to replication (Soller and Beckmann,
1990; Mackay, 2001). Perhaps most importantly, one
can study correlations between different traits, which

can reveal fitness trade-offs, and reaction norms, the
response of a specific genotype to different environ-
ments. However, not every geographic region where
Arabidopsis is found is fairly represented in the avail-
able RIL populations because geographic sampling
of Arabidopsis has so far been rather uneven (Fig.
3). Thus, forward genetics in additional material, even
if composed mostly of F2 populations, will likely
be informative. Fortunately, with reduced representa-
tion approaches such as restriction-associated DNA
sequencing (RAD-seq) or genotyping-by-sequencing
(Baird et al., 2008; Elshire et al., 2011) and multiplexing
of genomic DNA from many individuals (currently, at
least 96), costs for interrogating thousands of markers
have dropped to a few U.S. dollars.

Finally, a general caveat when performing conven-
tional genetic mapping is that chiasma frequencies
differ between accessions (Sanchez-Moran et al., 2002).
Data from F2 populations also support the conclusion
that recombination rates vary depending on the cross
(Salomé et al., 2011a). Thus, the ease with which loci
are mapped will differ from cross to cross, even more
so if structural variants interfere with recombination
near the loci of interest.

Table I. Traits studied by natural variation in Arabidopsis

For references, see Supplemental Table S1.

Trait
Gene(s)

Cloned?a

Aluminum content N
Autonomous endosperm development N
Auxin response N
Carbohydrate availability and content N
Cell wall composition N
Chiasma frequency N
Chromatin compaction N
Circadian clock C
Copper tolerance Y
Crowding response C
Disease resistance Y
Drought response N
Editing and processing of mitochondrial transcripts Y
Elemental composition Y/N
Flowering time Y
Freezing tolerance Y
Fruit number C
Genetic robustness N
Glucosinolate content Y
Inflorescence replacement (mimicking grazing) N
Jasmonate response N
Leaf senescence N
Leaf, inflorescence, and flower morphology Y
Lethality in interploidy crosses N
Life history traits other than flowering and growth N
Light response Y
Molybdenum content Y
Nitrogen availability response N
Oil content N
Osmotic and salt stress tolerance N
Phosphate content N
Phytate content N
Recruitment of bacterial rhizosphere communities N
Root hydraulics N
Root system size N
Salicylic acid response N
Salinity tolerance N
Seed dormancy Y
Seed germination, longevity N
Seed lipids N
Seed mucilage composition Y
Sinapoylmalate biosynthesis Y
Sodium accumulation Y
Stomata density N
Submergence tolerance N
Sulfate content Y
Terpene biosynthesis Y
Thermal dissipation N
Trichome density Y
Zinc response Y

aY, Yes; N, no; C, likely candidates.

Figure 2. Populations for mapping genes causing trait variation. Colors
indicate contribution from different parental accessions. Only one
chromosome pair is shown for each individual. HIF individuals are
derived from RILs, in which a small portion of the genome is still
heterozygous.
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Identification and Validation of Causal Genes
and Polymorphisms

After a genomic interval underlying phenotypic dif-
ferences has been identified, there are various options
to track down the responsible gene, assuming that
only a single gene is causal. Different from induced
mutations, simply resequencing a region with dozens
or more genes is on its own generally not informative
because of the high number of polymorphisms that
distinguish an arbitrary pair of accessions, about 1 in
every 200 bp. Fortunately, compared to other multicel-
lular organism in which natural variation is studied,
Arabidopsis has the enormous advantage that almost
all accessions are quite easily transformed by dipping
flowering plants into a suspension of Agrobacterium
tumefaciens containing a T-DNA vector with the trans-
gene of interest (Clough and Bent, 1998).
If the final mapping interval does not contain a gene

previously implicated in the trait of interest, one of the
first steps will often be to investigate whether null
alleles affect this trait. For the vast majority of genes,
T-DNA insertion lines in the reference Columbia-0
(Col-0) background are available from the stock cen-
ters (http://arabidopsis.org, http://arabidopsis.info;
for review, see Alonso and Ecker, 2006). The most
straightforward approach to investigate the activity of
individual genes in other genetic backgrounds is gene
silencing, and collections of vectors for knocking
down a large fraction of genes present in the reference
genome are available, both for conventional hairpin
RNA interference and artificial microRNAs (amiRNAs;
for review, see Ossowski et al., 2008b). Gene silencing
is a convenient tool to test the relative activity of
alleles, an approach that we have called quantitative
knockdown (Schwartz et al., 2009). It is conceptually
related to quantitative complementation, where dif-
ferent alleles are examined in the hemizygous state, by

crossing a homozygous strain to a tester that carries a
knockout allele of the gene of interest (Mackay, 2001;
Fig. 4).

As an alternative, one can introduce genomic frag-
ments spanning the region of interest to identify the
gene(s) affecting the trait under investigation. Trans-
genic complementation also allows the examination of
chimeric genes in different backgrounds to pinpoint
the causal region, or even nucleotide, within an allele.
A possible complication arises from the fact that the
addition of an extra wild-type copy of an independent
gene in the same pathway can quantitatively affect the
phenotype and thus confound the interpretation of the
observed phenotypes. An attractive feature of amiRNAs
is that one can engineer transgenes that do not change
the encoded protein but do not respond to silencing by
a specific amiRNA anymore (Palatnik et al., 2003). One
can thus use an amiRNA to knock out the endogenous
gene and at the same time introduce a variant copy of
the gene that is not affected by the amiRNA. This
allows in essence the functional replacement of one
allele with another.

A final word of caution: Spontaneous mutations are
not as rare as one might think, with direct measure-
ments indicating about one new single base pair mu-
tation per haploid genome and generation (Ossowski
et al., 2010). Thus, not every genetic variant that dis-
tinguishes accessions must be a natural variant in the
sense that it was present in nature. Indeed, there are
now several reports of mutations with large pheno-
typic effects that were segregating in an accession and
may only have arisen after the accession was collected.
Two of these cases affect parents of commonly used
RIL populations, Landsberg erecta-0 and Bayreuth-0
(Doyle et al., 2005; Loudet et al., 2008; Laitinen et al.,
2010). Thus, even if misidentification of an accession
has been ruled out, which is not uncommon (Anastasio
et al., 2011; Simon et al., 2011), there can be true genetic

Figure 3. Distribution of over 7,000 Arabidopsis accessions collected from the wild and available in the stock center or soon-to-
be-released collections. Western and southern Europe, including Great Britain, is heavily overrepresented, although sampling is
not even. Accessions from the presumed native range are in yellow and likely introductions in red. Whether the distribution
across China to Japan is continuous with the native range is unclear. Arabidopsis has been reported in additional locales, such as
South Korea, and several African countries (Alonso-Blanco and Koornneef, 2000). Maps courtesy of George Wang.
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and phenotypic differences between accessions that
share recent common ancestry.

WHOLE-GENOME RESOURCES FOR THE STUDY OF
NATURAL VARIATION

Enabling Genome-Wide Association Studies

Genetic mapping in crosses is greatly facilitated
when genome-wide polymorphisms, or better yet the
entire genome sequences, of the investigated acces-
sions are known. If a sufficient number of genome
sequences is available, one can even dispense with
experimental crosses and exploit shared ancestry to
directly identify common alleles that are responsible
for phenotypic variation in the entire population. This
approach was first proposed for human, already be-
fore the first finished human genome sequence was in
sight (Lander, 1996; Risch and Merikangas, 1996).
Because obtaining complete genome sequences for
many individuals of the same species was out of
question at the time, it was proposed to rely on linkage

disequilibrium (LD). LD refers to the fact that in most
species there has not been enough historic recombina-
tion to produce all possible combinations of physically
adjacent polymorphisms, but rather that sequence
variants are normally found in haplotype blocks of
various lengths. Thus, a causal polymorphism can in
principle be identified indirectly through its associa-
tion with any of the other sequence variants in its
haplotype block (Kruglyak, 1999; Jorde, 2000). The
term that is normally used today for this experimental
strategy is genome-wide association study (GWAS). A
shortcut that reduces the required genotyping effort
has been to make use of prior information and to first
focus on genes already shown to affect a trait of
interest (Long et al., 1998; Caicedo et al., 2004; Olsen
et al., 2004; Balasubramanian et al., 2006; Ehrenreich
et al., 2009), but this has become largely obsolete today.

While the principles of GWAS are easy to under-
stand, important limitations arise from population
structure, that is, not all investigated individuals being
equally distantly related to each other. Powerful
methods have been developed to correct for popula-
tion structure, but how to reliably detect alleles that are
largely fixed between populations remains a chal-
lenge. Other issues are allelic heterogeneity, that is,
alleles at a single locus with similar effects on gene
function having arisen repeatedly; or complex genetic
architecture, where many different genes affect the
same trait. A recent article by Myles et al. (2009)
provides an excellent primer of the challenges for
GWAS.

As with RIL analyses, the selfing nature of Arabi-
dopsis is a boon for GWAS, since each accession needs
to be genotyped or sequenced only once but can be
phenotyped many times. Magnus Nordborg almost
single-handedly convinced the Arabidopsis community
of the feasibility and usefulness of GWAS approaches,
even before high-density genotype information was
available (Aranzana et al., 2005; Zhao et al., 2007). While
initial estimates of LD in Arabidopsis were too high
(Nordborg et al., 2002, 2005), it finally turned out that
LD in the global population extends over not more than
about 5 to 10 kb, or one to two genes, which is very
convenient for GWAS (Kim et al., 2007). It is thought that
the relatively low LD reflects a history of frequent
outcrossing together with rapid dispersal enabled by
the selfing mode of reproduction.

The first enterprise with the goal of finding a large
fraction of sequence variants used high-density custom
arrays with almost one billion unique oligonucleotides
to interrogate the genomes of 20 accessions, including
the Col-0 reference accession (Clark et al., 2007). This set
was chosen to be maximally diverse based on a previ-
ous analysis of 96 accessions, from which about 1,000
short fragments distributed throughout the genome
had been dideoxy sequenced (Nordborg et al., 2005).
The most important information to come from the
array-based resequencing study was a collection of
hundreds of thousands of nonsingleton single nucleo-
tide polymorphisms (SNPs) that could be used for

Figure 4. Quantitative complementation and knockdown to determine
whether QTL are allelic to a candidate gene. Both tests rely on
quantitative comparisons between genotypes; the dashed boxes indi-
cate phenotypic differences to the genotype to the left. In a quantitative
complementation test, one determines whether the two QTL alleles,
Q1 and Q2, are differentially affected when heterozygous with the
wild-type (wt) or mutant (mut) allele of a candidate gene (Mackay,
2001). If the QTL alleles respond differently, i.e. if in this example only
Q1 complements the mutant phenotype, the candidate gene and the
QTL are probably allelic. Similarly, in a quantitative knockdown
experiment, a differential effect of an amiRNA (amiR) against the
candidate gene indicates that the Q1 allele has lower activity than Q2
and that the candidate gene is likely responsible for the QTL.
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GWAS (Kim et al., 2007). About 216,000 SNPs, or one
every 0.5 kb, have been subsequently typed in over
1,000 accessions (Horton et al., 2012), chosen from a
larger panel of more than 5,000 accessions for which
information from 149 intermediate frequency markers
was available (Platt et al., 2010). The high density of
SNPs meant that a typical haplotype block was tagged
with several SNPs, which made GWAS in Arabidopsis
right away more powerful than in humans. Despite
similar LD characteristics, GWAS in human initially
used only about 1 SNP per 6 kb (Wellcome Trust Case
Control Consortium, 2007).

Prospects of GWAS in Arabidopsis

Several proof-of-concept examples have now been
published, indicating that GWAS will often be suc-
cessful in Arabidopsis. In the first comprehensive
study, over 100 different morphological, physiological,
and molecular traits were analyzed in 96 to 192 acces-
sions (Atwell et al., 2010). In several cases, known
genes were rediscovered, and in many others, plausi-
ble candidates were identified with high precision.
The most impressive results, in agreement with pre-
vious pilot studies (Aranzana et al., 2005), were
obtained for disease resistance, which is often con-
trolled by single genes with very large effects. This is
in contrast with humans, where effect sizes of QTL
detected by GWAS are often small (McCarthy et al.,
2008; Manolio et al., 2009).
The utility of GWAS can be increased by making use

of prior information, such as functional data from
mutant studies, gene annotation, or membership of
genes in specific regulatory networks to prioritize
GWAS candidates (Aranzana et al., 2005; Schadt
et al., 2005; Atwell et al., 2010; Chan et al., 2011).
Similarly, QTL mapping in experimental populations
can greatly reduce the portion of the genome that one
has to consider for the location of GWAS QTL (Brachi
et al., 2010; Nemri et al., 2010). This approach becomes
particularly powerful when both strategies are directly
integrated using experimental populations with sev-
eral parents, so that alleles pinpointed by GWAS are
represented in multiple founder backgrounds. The
term nested association mapping has been coined for
this approach, which was pioneered in maize (Zea
mays; Yu et al., 2008; McMullen et al., 2009). Arabi-
dopsis populations, such as the MAGIC lines and
AMPRILs, serve a similar purpose (Kover et al., 2009;
Huang et al., 2011). An alternative will be to examine
several independent RIL populations. An advantage
of using RIL sets over F2 individuals in this case is that
for each set of founders, the lines can be chosen to be
maximally informative in terms of contribution of the
founder genomes, thus greatly reducing phenotyping
efforts (Xu et al., 2005; Simon et al., 2008).
Because of the plasticity of plant development and

physiology, the influence of genes on the phenotype
is very often dependent on the environment, often
codified as gene-by-environment or GxE interaction.

Similarly, the effects of individual genes are often
modified by other genes in the genome because genes
do not act on their own but form more or less complex
functional networks. When genes have nonadditive
effects, this is called GxG or more commonly an epi-
static interaction. While the identification of epistatic
QTL is standard fare for mapping in experimental
populations (Mackay, 2001), this continues to be amajor
challenge for GWAS. This has been suggested to be
computationally and statistically feasible several years
ago (Marchini et al., 2005), and several computational
strategies have been developed since (Mitchell-Olds,
1995; Cordell, 2009; Kam-Thong et al., 2011). However, I
am not aware of an example where all variants were
used in a GWAS to detect epistatic loci. Here again,
mapping in experimental populations, perhaps in com-
bination with network reconstruction (Rowe et al., 2008;
Jiménez-Gómez et al., 2010; Kerwin et al., 2011), should
help to reduce the search space for GWAS of epistatic
loci.

A Proliferation of Genome Sequences

In addition to the anonymous SNPs for the first
generation of GWAS in Arabidopsis, array-based re-
sequencing revealed tens of thousands of amino acid
replacements along with hundreds of more drastic
mutations that are likely to eliminate the function of
many genes in various accessions. In addition, a large
percentage of the reference genome was found to be
missing in each accession (Borevitz et al., 2007; Clark
et al., 2007; Zeller et al., 2008; Plantegenet et al., 2009).
This implied that, conversely, the reference accession
Col-0 likely lacked a substantial portion of genes
present in other accessions. The analysis of individual
loci had already shown that some gene families could
differ greatly between accessions. Foremost are the
disease resistance genes of the nucleotide-binding site-
Leu-rich repeat (NB-LRR) class, with both presence/
absence polymorphisms and highly divergent alleles
in different accessions (Grant et al., 1995; Caicedo
et al., 1999; Noël et al., 1999; Stahl et al., 1999; Rose
et al., 2004). A logical next step was therefore to scru-
tinize the genomes of accessions for sequences not
represented in the reference genome. With the advent
of new sequencing technologies, this goal became at-
tainable at a reasonable cost. Even before these methods
were exploited to the same end for human genomes, it
was shown that they not only gave an accurate account
of small-scale polymorphisms in Arabidopsis genomes
but that they could also be used to detect copy number
variants and to assemble sequences absent from the
reference (Ossowski et al., 2008a).

The 1001 Genomes Project for Arabidopsis was an-
nounced in 2007 (Nordborg and Weigel, 2008; Weigel
and Mott, 2009). The initial proposal was to pursue a
two-pronged hierarchical strategy for defining the
pangenome of Arabidopsis. The first hierarchical as-
pect was a sampling of accessions throughout the
range of Arabidopsis such that diversity could be
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analyzed at global, regional, and local scales. Thus,
rather than equidistant distribution of samples, it was
envisioned that the project would include regional
populations separated by distances measured in kilo-
meters as well as individuals from within local stands
spaced only meters apart. The second hierarchical
aspect was to produce genome sequences at different
levels of accuracy and completeness such that a rela-
tively small number of highly accurate and complete
genomes would inform the analysis of a much larger
number of genomes that had not been completely
assembled. The rationale behind this proposal was
that mere lists of sequence variants that result from
simple resequencing approaches, in which sequence
reads are only aligned to a target genome, can be mis-
leading. Specifically, because of false-negative prob-
lems, trying to reconstruct contiguous sequences by
superimposing known isolated polymorphisms on the
reference genome information can be problematic. To
overcome these limitations, two groups have intro-
duced reference-guided assembly approaches (Gan
et al., 2011; Schneeberger et al., 2011), in which the
Col-0 reference genome (Arabidopsis Genome Ini-
tiative, 2000) is first used to identify portions of the
genome that are conserved in other accessions. Gaps
are then filled in by assembling sequence reads and
anchoring them to the known bits. As expected, mul-
tiple out-of-phase insertions or deletions in coding
sequences can combine to restore open reading frames
(Schneeberger et al., 2011). Similarly, additional muta-
tions can make up for defects in splice acceptor or
donor sites, as can be inferred from transcriptome
analysis by RNA sequencing (Gan et al., 2011). The
error rates of these reference-guided assemblies in
single-copy regions were close to what was deemed as
the lower acceptable bound in the initial reference
genome sequencing project, about 1 in 10,000 bp
(although final error rates in the reference genome
were probably only about one-fifth; Ossowski et al.,
2008a).

As expected from previous resequencing studies, up
to 2% of reference positions were judged to be absent
from the new assemblies. Conversely, up to 0.6% of the
new assemblies represented sequences not found in
the reference genome (Gan et al., 2011; Schneeberger
et al., 2011). Because the new sequencing technologies
generate more error-prone and shorter reads, and the
insert sizes for paired-end sequencing libraries are
generally smaller as well (Metzker, 2010), there are
limits to closing gaps between regions that are well
conserved relative to the reference genome. That bases
present in the reference, but missing from a nonrefer-
ence accession, outnumber the opposite class several-
fold indicates the shortcomings of the reference-guided
assemblies, since it should be equally likely that inser-
tions and deletions occur on either lineage. We are thus
currently faced with a paradox: .90% of the euchro-
matic portion of an accession’s genome can be se-
quenced for a few hundred dollars, but the remainder
can only be recovered when investing many hundred

or thousand times that amount. This is particularly
relevant because some of the most interesting genes in
the genome, such as many disease resistance genes,
reside in highly variable gene clusters with often nearly
identical tandem repeats that are even challenging for
assembly from dideoxy sequenced bacterial artificial
chromosomes or fosmid clones (Noël et al., 1999).

While the most common approach for the identifi-
cation and annotation of variants has been comparison
against the reference, a multiple alignment consensus
benefits the evaluation of complex alleles (Gan et al.,
2011). However, with the rapid increase in the number
of genome sequences, simple all-against-all compari-
sons will soon not be feasible anymore because of the
time required to perform them. It has therefore been
proposed to represent the pangenome, that is, the
collection of all possible sequence variants along each
chromosome, in a single data structure as a graph,
which would both facilitate the identification of poly-
morphisms in newly sequenced genomes and their
classification as shared or unique (Schneeberger et al.,
2009).

Insights from Comparing Genome Sequences

Apart from supporting forward genetic studies in
Arabidopsis, genome sequences have increased our
understanding of the evolutionary history of the spe-
cies. Array-based comparison of 20 accessions re-
vealed only a single large region in the genome that
was shared by the majority of accessions, indicative of
this region having experienced recent and strong
selection in many different populations (Clark et al.,
2007). Remarkably, the much more fine-grained infor-
mation from short-read sequencing of 80 lines did not
substantially change this picture of strong selective
sweeps being rare, even though population differen-
tiation along the genome is not uniform (Cao et al.,
2011).

In addition to local polymorphism patterns that are
shaped by selection and demography, there are con-
sistent chromosomal-scale differences that are proba-
bly caused by molecular and genetic factors, such as
mutation, recombination, and biased gene conversion.
One of these is an excess of polymorphisms in regions
adjacent to the centromeres (Borevitz et al., 2007; Clark
et al., 2007), which has also been reported in Medicago
truncatula and rice (Oryza sativa), but not in maize
(Gore et al., 2009; Huang et al., 2010c; Branca et al.,
2011). The interpretation of polymorphism patterns in
Arabidopsis has also benefited from the high-quality
reference sequence available now for the close relative
Arabidopsis lyrata (Hu et al., 2011). In agreement with
lack of conservation between the two species reflecting
either that sequences are dispensable or subject to
species-specific positive selection, regions found only
in Arabidopsis are more polymorphic than shared
regions (Cao et al., 2011).

Finally, Arabidopsis accessions harbor extensive
variation in mitochondrial genomes (Forner et al.,
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2005; Arrieta-Montiel et al., 2009), in subtelomeric
regions (Kuo et al., 2006; Wang et al., 2010), and in
heterochromatic repeats, including retrotransposons
and rDNA (Fransz et al., 2000; Davison et al., 2007; Ito
et al., 2007). Structural differences between mitochon-
drial genomes can be revealed relatively easily by new
sequencing methods (Davila et al., 2011). Furthermore,
although read lengths and insert sizes are insufficient
for long-range reconstruction of highly repetitive re-
gions of the genome, read coverage and sequence
variation in individual reads can be exploited to de-
termine differences in genome size and repeat content
(James et al., 2009; Tenaillon et al., 2011).

Utility of Genome Sequences

As of the time that this article was written (end of
2011), over 100 genome sequences for Arabidopsis had
been published. In addition, sequence data for over
300 additional accessions were already publicly avail-
able. In aggregate, commitments for over 700 acces-
sions had been made, indicating that the initial goal of
1,001 genome sequences would be reached well before
the end of 2012 (http://1001genomes.org).
Several of the Arabidopsis genome sequences were

immediately useful. For example, the Landsberg erecta
accession is commonly used for mutant screens, and
its genome sequence is facilitating the mapping and
analysis of induced mutations. Similarly, several of the
accessions are parents of RIL populations (Ossowski
et al., 2008a; Schneeberger et al., 2009, 2011; Gan et al.,
2011), and their genome sequences are aiding the
identification of polymorphisms responsible for QTL.
Genome sequences also provide an inventory of poten-
tial knockout mutations, which is informative given
that a considerable fraction of natural genetic variation
is due to loss-of-function alleles. Examples are new
alleles of PHYTOCHROME D (PHYD) and FRIGIDA
LIKE1 (FRL1), for which before only single alleles were
known (Aukerman et al., 1997; Schläppi, 2006; Cao
et al., 2011).
In addition, the 1001 Genomes Project is advancing

GWAS. As discussed above, the first phase of GWAS in
Arabidopsis has been based on a set of 216k tag SNPs,
which were estimated to predict .90% of all common
variants (Kim et al., 2007; Horton et al., 2012). It is
simple to call the same SNPs in any of the accessions of
the 1001 Genomes Project and to include any line that
has not been array genotyped into GWAS projects that
makes use of the 216k tag SNP array data. Further-
more, it is possible to accurately impute common
variants identified by whole-genome sequencing in
array genotyped accessions and GWAS with imputed
data detects additional polymorphisms linked to traits
under consideration (Cao et al., 2011).
Apart from increasing the chances that sequence

differences directly responsible for trait variation are
found by GWAS, a major advantage of complete ge-
nome sequences is that they support the prediction of
activity differences between potentially causal alleles.

For example, in coding regions, mutations that disrupt
the open reading frame or affect splicing are more
likely to affect gene function than codon or silent
changes. And among amino acid substitutions, one
can estimate how probable it is that a mutation has
deleterious effects based on conservation of that amino
acid in other species (Ng and Henikoff, 2006).

Complete genome sequences will thus help to tackle
one of the major challenges of GWAS, allelic hetero-
geneity, where several different alleles have similar
effects on the trait of question. That independent al-
leles at the same locus can have the same phenotypic
consequences has been known for a quarter of a cen-
tury, since the first genes responsible for genetic disor-
ders or cancer in humans were cloned (Royer-Pokora
et al., 1986; Clark et al., 1989; Botstein and Risch, 2003).
In Arabidopsis, the flowering regulators FRIGIDA (FRI)
and FLOWERING LOCUS C (FLC) are often partially
or completely inactivated, with many of these alleles
being found only in single accessions (Johanson
et al., 2000; Le Corre et al., 2002; Gazzani et al., 2003;
Michaels et al., 2003; Lempe et al., 2005; Shindo et al.,
2005; Méndez-Vigo et al., 2011). Drastic mutations that
prematurely terminate or partially delete the same
open reading frame are found more often than ex-
pected by chance in the genomes of different acces-
sions (Cao et al., 2011; Fig. 5). This might be the
outcome of positive selection, as is the case for FRI and
FLC (Toomajian et al., 2006), or purifying selection
being weak or absent. In either case, the presence of
multiple alleles with similar effects on a particular
phenotype makes the detection of such loci in GWAS
analyses difficult since each polymorphism is consid-
ered separately (Myles et al., 2009). If, instead, all
alleles with similar predicted activity differences were
combined or, better yet, if alleles were considered ac-
cording to their relative degree of activity, this hurdle
could be overcome.

Figure 5. Comparison of expected and observed occurrences of 8,133
independent premature stops in 4,263 protein coding genes, consid-
ering all genes with .90% coverage in 75 out of 80 accessions. Data
are from Cao et al. (2011).
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The methods discussed in the preceding paragraph
would be a considerable improvement over the strat-
egy that is gaining popularity in humans: the search
for an excess of rare variants in candidate genes. In
rare-variant-burden methods, rare variants are com-
bined for the purposes of contrasting phenotypically
distinct classes of individuals, but functional effects of
alleles are ignored, and these methods are not inte-
grated into standard GWAS (Asimit and Zeggini,
2010).

Epigenomic Variation

GWAS in humans, where it is not unusual that tens
of thousands of individuals are analyzed, has been
successful in detecting many alleles, even with very
small effects, but the fraction of the total variation
explained by these variants is often only small. This
also has been the case for traits such as height that are
known to be highly heritable from family studies.
Some possibilities are that genetic architecture may
be more complex, with many interacting loci, or that
rare alleles are more important than anticipated (see
above). An alternative explanation, which is en vogue
in many circles, is that epigenetic variation unlinked
to sequence variants and, hence, not detectable by
conventional GWAS is responsible for many pheno-
typic differences (McCarthy et al., 2008; Manolio et al.,
2009).

Epigenetic differences can have obvious conse-
quences in plants. In several species, including Arabi-
dopsis, spontaneously occurring epialleles with overt
phenotypes have been described (Jacobsen and
Meyerowitz, 1997; Cubas et al., 1999; Hollick et al.,
2000; Soppe et al., 2000; Stam et al., 2002; Manning
et al., 2006; Martin et al., 2009). The epialleles often
show increased cytosine methylation of the promoter
and strongly reduced RNA expression. In several cases,
the epialleles are associated with structural changes,
such as the g mutation in melon, which is apparently
caused by the insertion of a transposon and spread of
DNA methylation into adjacent sequences.

Tiling array analyses comparing two different pairs
of Arabidopsis accessions have shown that these differ
in the extent of methylation at individual cytosines.
That there are fewer differences in transposable ele-
ment than genic methylation between natural acces-
sions (Vaughn et al., 2007) agrees with transposable
element methylation being more stable in inbred lines
(Becker et al., 2011; Schmitz et al., 2011). Methylation
differences seem to be largely stable in F1 hybrids
(Woo and Richards, 2008; Zhang et al., 2008; Groszmann
et al., 2011), but methylation patterns can change at
relatively high rates, around 1% or more, in subse-
quent generations (Vaughn et al., 2007). The fluidity of
the genomic methylation landscape after crosses is
consistent with RNA-dependent DNA methylation
mediated by short interfering RNAs being able to
target other loci in trans, as long as these harbor
sufficient levels of sequence similarity (Melquist and

Bender, 2003). This is substantiated by nonadditive
expression levels of short interfering RNAs and cor-
related effects on DNA methylation in F1 hybrids
(Groszmann et al., 2011).

Importantly, although epialleles with phenotypic
effects are largely stable and can be inherited over
many generations, most revert occasionally to the wild-
type form (Jacobsen andMeyerowitz, 1997; Cubas et al.,
1999; Hollick et al., 2000; Soppe et al., 2000; Stam et al.,
2002; Manning et al., 2006; Martin et al., 2009). The
stability of DNA methylation in inbred Arabidopsis
lines has recently been examined directly (Becker
et al., 2011; Schmitz et al., 2011). While loss and gain
of methylation at individual sites occurred much more
often than mutations in the nucleotide sequence
(Ossowski et al., 2010), changes in larger methylated
regions similar to the ones that distinguish epialleles
identified by forward genetics were rare. However,
both types of methylation changes were distinguished
from DNA mutations in that the same positions were
affected in independent lines much more often than
expected by chance and that there was an appreciable
rate of reversions.

Crosses of wild-type lines to mutant strains with
largely demethylated genomes have also revealed a
wide range in the stability of epialleles after the causal
mutations had been segregated away (Reinders et al.,
2009; Teixeira et al., 2009). Consistent with the more
labile nature of epialleles, heritability estimates in such
lines are considerably lower than they are in natural
accessions for the same traits (Roux et al., 2011). Thus,
while the large majority of DNA methylation differ-
ences is sufficiently stable to account for inheritance
within a limited number of generations, it remains
unclear how often epialleles can become subject to
Darwinian selection and thus make a contribution to
long-term evolution. If reversion rates exceed the se-
lective advantage conferred by an epiallele, its fre-
quency in the population will be largely determined
by the equilibrium of forward and reverse epimutation
rates (Slatkin, 2009; Johannes and Colomé-Tatché,
2011).

In summary, although natural epialleles are often
due to nearby structural variation, crosses between di-
vergent accessions can induce new epialleles in trans.
While the first class does not pose a problem for con-
ventional GWAS, as such alleles should be tagged
by linked sequence polymorphisms, the second class
would only be revealed if GWAS would be extended
to directly include information on DNA methylation
profiles. A different question is whether epialleles are
equally, more, or less likely than DNA alleles to reflect
adaptation to the local environment.

LEARNING NEW BIOLOGY FROM THE STUDY OF
NATURAL VARIATION

While knowledge about the origin and phenotypic
effects of sequence polymorphisms is central to un-
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derstanding how species adapt to their natural envi-
ronment, most studies of genetic variation in Arabi-
dopsis have probably been motivated by the desire to
identify regulatory and other genes that are not pre-
sent in the common laboratory accessions. An espe-
cially original use of natural variation has been the
search for second site modifiers of ABA insensitive3
and leafy cotyledon1 mutant phenotypes. Both mutants
suffer from impaired seed maturation, and seed via-
bility declines much more rapidly than in wild-type
plants. Introgression of the mutant alleles into other
accessions identified natural modifiers that can par-
tially suppress the mutant phenotypes, possibly point-
ing to new regulators of seed maturation (Sugliani
et al., 2009). In a similar manner, the CAULIFLOWER
(CAL) gene was discovered serendipitously as an en-
hancer of the apetala1 (ap1) mutant phenotype. CAL
and AP1 turned out to be paralogs with an asym-
metrical relationship: While AP1 can compensate for
loss of CAL activity, the reverse is not true. Thus, in
contrast with induced ap1 mutations, natural loss-of-
function alleles of CAL have no overt phenotype on
their own and are only noticed if AP1 is inactive as
well (Bowman et al., 1993; Kempin et al., 1995).
Arabidopsis was used early on to identify genes that

control seed dormancy (van Der Schaar et al., 1997).
For ease of cultivation, common laboratory accessions
had been selected to be early flowering (more below)
and to have little dormancy, meaning that seeds would
germinate relatively quickly after harvest. The DELAY
OFGERMINATION1 (DOG1) locus, the first dormancy
QTL cloned, encodes the prototype of a small gene
family of unknown molecular function. There is ex-
tensive variation in DOG1 expression levels between
accessions, suggesting the presence of many function-
ally distinct alleles of DOG1 (Bentsink et al., 2006).
Arabidopsis accessions also remain an important re-
source for functional and evolutionary analyses of
large-effect resistance genes (Staskawicz et al., 1995).
This is a large area for which there are several recent
in-depth reviews (Nishimura and Dangl, 2010).
Below, I will discuss three naturally variable traits in

some more detail: trichome density, which provides a
paradigm for how information from multiple genome
sequences can be used to pinpoint causal polymor-
phisms; glucosinolate content, which has an underly-
ing biochemical pathway with variation at almost
every step; and the onset of flowering, a developmen-
tal trait with a well-understood molecular basis.

Trichome Density

Early studies by Rodney Mauricio and Mark
Rausher came to the conclusion that both physical
defenses in the form of leaf hairs (trichomes) and
chemicals (glucosinolates) reduce herbivore damage
to Arabidopsis in the field but that these are not
without costs (Mauricio and Rausher, 1997; Mauricio,
1998). Several genes have been identified as affecting
trichome density of natural Arabidopsis accessions.

The most dramatic effects are seen in accessions that
are glabrous, that is, lack trichomes completely, and at
least two different loss-of-function mutations at GLA-
BRA1 (GL1) have been found. Whether a fitness trade-
off, as suggested for other defense traits, underpins the
GL1 polymorphisms is unknown. Balancing selection,
however, which is often taken as a sign of trade-offs,
does not appear to be responsible for maintaining
different GL1 alleles (Hauser et al., 2001). Glabrous-
ness caused by inactivating mutations in GL1 also
segregates in A. lyrata and Arabidopsis halleri popula-
tions (Hauser et al., 2001; Kärkkäinen and Ågren, 2002;
Kivimäki et al., 2007; Kawagoe et al., 2011).

A less extreme phenotype of reduced trichome
density is caused in some Arabidopsis accessions by
a nonsynonymous substitution in MYC1 (Symonds
et al., 2011). As another warning to population genet-
icists, one of the exons was found to exhibit a strong
signal of divergent selection, with many amino acid
substitutions. However, this signal was not correlated
with trichome density.

Other accessions have increased trichome number
relative to the Col-0 reference accession, and EN-
HANCER OF TRY AND CPC2 (ETC2) has been iden-
tified as the causal gene (Hilscher et al., 2009). ETC2,
MYC1, and GL1 all encode transcription factors, with
GL1 promoting and ETC2 repressing trichome forma-
tion by competing for interaction with common part-
ners, a group of basic helix-loop-helix proteins that
includes GL3 and MYC1 (Ishida et al., 2008). In con-
trast with MYC1, the high- and low-activity variants
of ETC2 segregate at intermediate frequencies, indi-
cating that ETC2 is a major determinant of natural
variation in trichome number. ETC2 very likely cor-
responds to one of the first QTL that was mapped
in Arabidopsis, REDUCED TRICHOME NUMBER
(Larkin et al., 1996), and consistent with alleles of dif-
ferent activity being common, ETC2 can also be de-
tected by GWAS (Atwell et al., 2010). Notably, it had
initially been suggested that ETC2 has only a minor
role in trichome formation, a conclusion that came
from studies done with common accessions that have
an ETC2 allele without obvious disruptions but with
nevertheless low activity.

The work on ETC2 is noteworthy because of how the
causal polymorphism was first pinpointed using a
strategy that should be broadly applicable. To trian-
gulate the causal region in the final mapping interval,
accessions with either very high or very low trichome
densities were selected, and the extent of haplotype
sharing in each group was compared, which identified
a small region with only two candidate polymor-
phisms (Hilscher et al., 2009). Transformation with
chimeric transgenes provided conclusive support that
one of the variants, a nonsynonymous mutation, was
reducing the activity of ETC2. With the resources of the
1001 Genomes Project, these types of local association
studies should become a common strategy for the
endgame in identifying QTL after conventional map-
ping in F2 or similar populations.

Natural Variation in Arabidopsis
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Glucosinolate Content

In addition to the gene-for-gene resistance loci that
are effective against individual pathogen strains (for
review, see Nishimura and Dangl, 2010), Arabidopsis
accessions also show quantitative variation in resis-
tance, in particular against herbivorous insects. As
with trichomes, chemical defenses in the form of a
Brassicaceae-specific class of secondary metabolites,
the glucosinolates, can reduce herbivore damage (Blau
et al., 1978). There are considerable inter- and intra-
specific differences in the repertoire of glucosinolates,
which are hydrolyzed by the enzyme myrosinase into
the active defense compounds (Kliebenstein et al.,
2005). In Arabidopsis, METHYLTHIOALKYLMALATE
SYNTHASE (MAM) and AOP are the two major loci
responsible for variation in glucosinolate biosynthesis,
with additional contributions from the GSL-OH locus
(Kliebenstein et al., 2001; Kroymann et al., 2001, 2003).
Hydrolysis of the glucosinolates is further affected by
the polymorphic EPITHIOSPECIFIER PROTEIN and
EPITHIOSPECIFIER MODIFIER1 loci (Lambrix et al.,
2001; Zhang et al., 2006). In other Brassicaceae, several
of the same genes are responsible for intraspecific
variation in glucosinolate content, including A. lyrata
(Li and Quiros, 2003; Heidel et al., 2006).

Notably, both the MAM and AOP loci are complex,
with several tandem arrayed genes that vary in pres-
ence, enzyme activity, or expression level between
accessions, giving rise to more than two alternative
allelic states, processes that are apparently driven by
positive selection (Kliebenstein et al., 2001; Kroymann
et al., 2001, 2003). At least MAM shows a similar
pattern of diversity created by gene duplication and
neofunctionalization between other members of the
Arabidopsis genus as well as closely related genera
(Benderoth et al., 2006).

The detailed understanding of the control of gluco-
sinolate accumulation in turn supports research into
broader questions of genetic variation, such as the
importance of stochastic variation, which was found to
be genetically encoded as well (Jimenez-Gomez et al.,
2011).

Flowering Time

Seed production is one of the most important com-
ponents of fitness, and to optimize seed set, plants
need to flower at the right time of year. In agreement
with Arabidopsis is found in places with very different
growing seasons, natural accessions differ greatly in
their flowering behavior. Beginning with Laibach
(1943, 1951), several investigators reported flowering
variation not only in inbred accessions, but also in
individuals collected from the wild (Napp-Zinn, 1957;
Cetl et al., 1968; Jones, 1971; Westerman, 1971). That
this trait is under selection has also been inferred from
population genomics analyses (Flowers et al., 2009)
and from the finding of latitudinal and altitudinal
clines, likely due to covariation of flowering time with

climatic factors (Caicedo et al., 2004; Stinchcombe
et al., 2004; Lempe et al., 2005).

The first natural allele to be mapped with molecular
markers in Arabidopsis was at the FRI locus, which
segregates in a Mendelian manner in crosses between
late- and early-flowering accessions (Lee et al., 1993;
Clarke and Dean, 1994). The first QTL mapped in
Arabidopsis were also ones controlling flowering
(Kowalski et al., 1994; Clarke et al., 1995), followed
by many additional QTL studies (for review, see
Koornneef et al., 2004; Shindo et al., 2007). Mapping
in crosses and GWAS have shown that flowering time
variation can be explained by relatively few large-
effect QTL (Atwell et al., 2010; Brachi et al., 2010; Li
et al., 2010; Salomé et al., 2011b; Strange et al., 2011),
which is very different from maize (Buckler et al.,
2009).

FRI and the epistatically acting FLC gene are re-
sponsible for a large fraction of flowering time varia-
tion in Arabidopsis accessions when these are not
exposed to a winter-like vernalization treatment. FRI
promotes expression of the FLC transcription factor,
which directly represses genes with positive roles in
flowering (Li et al., 2008; Deng et al., 2011). Allelic
variation at FLC likely accounts for flowering time
differences in other Brassicaceae as well, including
Capsella bursa-pastoris and some, but not all, Brassica
species (Long et al., 2007; Razi et al., 2008; Slotte et al.,
2009; Zhao et al., 2010). A role for FRI in flowering time
variation in A. lyrata and Brassica napus has been
inferred from association studies (Kuittinen et al.,
2008; Wang et al., 2011).

Strikingly, there are many alleles at both FRI and
FLC (Michaels and Amasino, 1999; Johanson et al.,
2000; Le Corre et al., 2002; Gazzani et al., 2003; Lempe
et al., 2005; Shindo et al., 2005; Méndez-Vigo et al.,
2011). Because of the convenience of early flowering,
commonly used laboratory accessions have a loss-of-
function allele at one or both loci. However, while low-
activity FRI alleles typically have disrupted open
reading frames, FLC alleles are predominantly char-
acterized by noncoding structural variation. During
vernalization, FLC becomes epigenetically silenced,
and natural alleles differ in the duration of vernaliza-
tion needed for stably switching off FLC expression
(Shindo et al., 2006). In addition to its repressive effects
on flowering, high-activity alleles of FLC promote
germination in the cold, which in turn allows plants
to experience the longer cold period required for
flowering when FLC is active (Chiang et al., 2009).
The FRI homologs FRL1 and FRL2 along with the FLC
homologs FLM/MAF1 and MAF2 provide additional
routes to flowering time variation (Werner et al., 2005;
Schläppi, 2006; Caicedo et al., 2009; Rosloski et al.,
2010).

Flowering time control is one of the most intensively
investigated developmental processes in Arabidopsis,
and well over 100 genes are known to affect flowering,
with many having substantial pleiotropic effects on
plant growth (Srikanth and Schmid, 2011). Remark-

Weigel

12 Plant Physiol. Vol. 158, 2012



ably, only one gene with very few nonflowering phe-
notypes, the central flowering activator FT, has been
shown to contribute extensively to flowering time
variation between Arabidopsis accessions (Schwartz
et al., 2009; Li et al., 2010; Huang et al., 2011; Salomé
et al., 2011b; Strange et al., 2011). QTL studies have
implicated FT as being the cause of flowering time
differences also in B. napus (Long et al., 2007).
Several other genes responsible for flowering time

variation in Arabidopsis have multiple functions dur-
ing plant development, including the photoreceptor
encoding genes CRYPTOCHROME2, PHYC, and
PHYD (Aukerman et al., 1997; El-Din El-Assal et al.,
2001; Balasubramanian et al., 2006; Méndez-Vigo et al.,
2011). In addition, there is functional allelic variation at
PHYA and PHYB. Both regulate flowering (Srikanth
and Schmid, 2011), although the effects of the natural
alleles on flowering have not been studied (Maloof
et al., 2001; Filiault et al., 2008). Two other pleiotropi-
cally acting, naturally variable flowering regulators
are FY (Adams et al., 2009) and HUA2. In addition to
affecting flowering time, a natural HUA2 change-of-
function allele has a dramatic effect on plant architec-
ture that had not been anticipated frommutant studies
(Alonso-Blanco et al., 1998a; Wang et al., 2007; Huang
et al., 2011; Strange et al., 2011). Finally, additional loci
responsible for flowering time regulation have been
identified by growing plants under variable conditions
(Weinig et al., 2002; Brachi et al., 2010; Li et al., 2010).

TOWARD AN UNDERSTANDING OF THE FORCES
SHAPING GENETIC VARIATION

Apart from extending our knowledge of biological
mechanisms and pathways in Arabidopsis, a major
motivation for studying genetic variation is to under-
stand how a species adapts to different local environ-
ments, which traces adaptation leaves in the genome,
and how this leads to the formation of new species.
In this section, I describe how genome analyses have
provided insights into the history of the species, what
is being learned about epistatic interactions between
alleles from different genomes, and how evidence for
local adaptation is emerging.

Geographic Distribution of Population Diversity

Until a decade ago, the vast majority of the few
hundred Arabidopsis accessions available from the
stock centers came from western Europe. In the past
years, collections have been substantially expanded,
with more than 2,000 genotypically distinct accessions
having been described (Schmuths et al., 2006; Beck
et al., 2008; Picó et al., 2008; Montesinos et al., 2009;
Bomblies et al., 2010; Lewandowska-Sabat et al., 2010;
Platt et al., 2010; Cao et al., 2011; Méndez-Vigo et al.,
2011). With whole-genome data, the pattern of isola-
tion-by-distance that had been deduced from more
sparse data before came into even sharper focus. In

addition, it was found that geographic regions differ
greatly both with respect to the total number of poly-
morphisms distinguishing accessions within a region
from each other and from other regions and the rela-
tive frequency of variants that are shared with other
regions.

There is an overall gradient from west to east: The
greatest diversity is found at the western end of the
native range, in the Iberian Peninsula, including North
Africa, while the most uniform regions are in Central
Asia. This is consistent with the view that Arabidopsis
populations in the west are the oldest, with later
expansion into the eastern end of its native distribu-
tion, along with recently colonized regions, such as the
Alps, in the center of the range (Sharbel et al., 2000;
Nordborg et al., 2005; Schmid et al., 2005; Ostrowski
et al., 2006; Beck et al., 2008; Picó et al., 2008; Platt et al.,
2010; Cao et al., 2011). In addition, there is also al-
titudinal stratification within regions, with popula-
tions from high altitude being overall less diverse than
those from lower altitude (Montesinos et al., 2009;
Lewandowska-Sabat et al., 2010; Gomaa et al., 2011). It
has also been suggested that there is evidence for
migration from east to west, accompanying the spread
of agriculture (François et al., 2008); however, knowing
that the Iberian Peninsula is the most diverse region, it
is unclear what to make from this. The regional dif-
ferences have certainly important implications for the
design of GWAS, since LD extends further in less
diverse regions (Cao et al., 2011).

In continental Eurasia, identical multilocus geno-
types are almost exclusively found only in the same
local patches of Arabidopsis individuals (Picó et al.,
2008; Bomblies et al., 2010; Lewandowska-Sabat et al.,
2010; Platt et al., 2010). Exceptions are the British Isles
and North America. In both regions, one specific ge-
notype is found in many different places. For North
America, recent and widespread, but uneven, intro-
duction by European settlers has been suggested as the
most likely cause; this scenario is compatible with the
absence of genetic isolation by distance in North
America (Platt et al., 2010).

Epistatic Interactions between Genomes

Despite its selfing nature, and contrary to what early
analyses had suggested, stands of Arabidopsis plants
can include several different multilocus genotypes.
Moreover, outcrossing rates of Arabidopsis in nature
can be several percent, and heterozygous individuals
are thus not that rare (Stenøien et al., 2005; Bakker
et al., 2006; Jorgensen and Emerson, 2008; Bomblies
et al., 2010; Platt et al., 2010).

Superior performance in heterozygous F1 hybrids is
known as heterosis or hybrid vigor. Heterosis in
Arabidopsis is generally not as dramatic as in other
species, but heterotic QTL for biomass and metabolites
have been identified by backcrossing RILs derived
from two inbred accessions to the founders (Syed and
Chen, 2005; Kusterer et al., 2007; Lisec et al., 2009;

Natural Variation in Arabidopsis

Plant Physiol. Vol. 158, 2012 13



Meyer et al., 2010). There is also extensive evidence for
nonadditive, or epistatic, effects on gene expression in
intra- and interspecific hybrids (Wang et al., 2006;
Zhang and Borevitz, 2009; Zhang et al., 2011). In both
stable allotetraploids and F1 hybrids of Arabidopsis3
arenosa, circadian gene expression programs are al-
tered, and a similar trend is apparent in F1 hybrids
between two Arabidopsis accessions that exhibit hy-
brid vigor. The heterotic effects are mediated by cen-
tral regulators of the circadian clock (Ni et al., 2009),
although the proximate causes that alter activity of
these regulators, and their relationship to the heterosis
QTL identified in the same cross before, remain un-
known.

Inferior performance of F1 hybrids is known as
hybrid weakness or incompatibility, with extreme
cases presenting as hybrid sterility or lethality. In
addition, a decline in fitness of later generations is
called hybrid breakdown or inbreeding depression
(Hochholdinger and Hoecker, 2007; Charlesworth and
Willis, 2009; Bomblies, 2010) A commonly observed
incompatibility phenomenon is cytoplasmic male ste-
rility (CMS), due to a mismatch between nuclear genes
that encode proteins active in mitochondria and the
mitochondrial genome (Fujii and Toriyama, 2008).
Despite well over 1,000 different interaccession crosses
having been examined (Bomblies et al., 2007), CMS has
not yet been reported in Arabidopsis, even though
weak CMS has been observed inA. lyrata (Leppälä and
Savolainen, 2011). The most common obvious defect in
F1 hybrids of Arabidopsis appears to be an autoim-
mune syndrome, hybrid necrosis, that is also known
from many other plants.

Hybrid necrosis can often be explained by one or
two epistatically interacting loci (Bomblies et al., 2007;
Bomblies and Weigel, 2007). At least one of the genes
causal for hybrid necrosis in Arabidopsis encodes an
immune receptor of the NB-LRR class (Bomblies et al.,
2007), consistent with the identification of immune
genes underlying hybrid necrosis in other species
(Krüger et al., 2002; Jeuken et al., 2009; Yamamoto
et al., 2010). The NB-LRR family is the most variable
gene family in plants, with genes often being found in
clusters that have a complex history of gene duplica-
tion, deletion, and gene conversion. NB-LRR genes are
engaged in recognition of diverse proteins (Nishimura
and Dangl, 2010), providing an intuitive explanation
for why hybrid necrosis is so common. In a broader
context, hybrid necrosis is a manifestation of the costs
of disease resistance (Tian et al., 2003).

In some instances, hybrid necrosis becomes only
expressed in the F2 generation (Alcázar et al., 2009).
In one such case, one of the causal genes encodes a
receptor kinase homolog, with evidence of positive
selection for disease resistance having increased the
frequency of this allele in Central Asia (Alcázar et al.,
2010). A receptor-kinase-like gene of a different class
is responsible for an incompatibility that primarily
causes growth defects. This specific case involves
an interaction between alleles at a single locus with

similar properties as many NB-LRR loci, namely being
composed of a highly variable tandem array of genes
(Smith et al., 2011). Notably, not every highly variable
gene family appears to cause problems in hybrids.
Cytochrome P450s, which are important for plant
insect defense and are produced by one of the most
highly variable gene families (Clark et al., 2007; Cao
et al., 2011), have so far not been tied to hybrid
weakness, perhaps because they are not designed to
interact with a diverse set of other proteins.

Most F2 incompatibilities were not discovered be-
cause of overt phenotypic effects but were deduced
from segregation distortion, that is, the absence of
certain genotypic combinations, in F2 or RIL popula-
tions (Lister and Dean, 1993; Mitchell-Olds, 1995;
Alonso-Blanco et al., 1998b; Loudet et al., 2002; Werner
et al., 2005; Törjék et al., 2006; Simon et al., 2008;
Balasubramanian et al., 2009; Salomé et al., 2011a). For
RILs, this can be due to inadvertent selection, e.g.
because late-germinating lines are eliminated, but
several cases are associated with lethality of specific
segregants. One example involves a pair of paralogs
that arose from a very recent ectopic duplication event
and that independently sustained inactivating muta-
tions in different lineages (Bikard et al., 2009). About
three-quarters of accessions carry inactive copies of
one or the other paralog, suggesting that increased
dosage is disfavored. A similar situation of recipro-
cally mutated paralogs explains an epistatic interac-
tion affecting shoot growth (Vlad et al., 2010). Both
cases differ from other examples of complex duplica-
tion and mutation events, where the paralogs have
become neofunctionalized and have now distinct ac-
tivities (Kliebenstein et al., 2001; Kroymann et al., 2003;
Huang et al., 2010a).

Experimental Ecology and Ecological Genomics

The worldwide distribution of Arabidopsis can be
well described by climatic range boundaries; these
indicate that laboratory conditions commonly used for
growth of Arabidopsis are at the extreme end of its
normal habitats, which are normally much cooler and
drier (Hoffmann, 2002). This has important implica-
tions for interpreting phenotypic differences observed
in the greenhouse. For example, strains with differen-
tial activity of the key flowering regulators FRI and
FLC, known to vary in many accessions, only differ
strongly in their flowering behavior outdoors when
germinated at specific times of the year, with a critical
period in early fall having a disproportionately large
effect on flowering time, namely, whether plants over-
winter (Wilczek et al., 2009). Such knowledge is es-
sential if one wants to predict responses to a changing
climate (Wilczek et al., 2010). Furthermore, by cultur-
ing plants in seminatural settings, in which either
variable light and temperature conditions are repro-
duced in climate chambers or plants are germinated in
the greenhouse, then transplanted outdoors, one can
detect QTL that are not found when plants are grown
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in a uniform environment. Whether either type of QTL
is more relevant is unclear and can only be addressed
by phenotyping truly naturally growing individuals.
Nevertheless, analysis in seminatural conditions pro-
vides insights into the genetic basis of traits considered
to be indicative of fitness, such as germination, sur-
vival, fruit and seed number, or competitiveness
(Weinig et al., 2002, 2003a, 2003b; Stinchcombe et al.,
2004; Donohue et al., 2005; Li et al., 2006; Brachi et al.,
2010; Huang et al., 2010b; Li et al., 2010; Fournier-Level
et al., 2011).
Different experimental approaches are beginning

to reveal local adaptation in Arabidopsis. When 74
accessions were monitored in the greenhouse under
different temperatures, it was found that accessions
from cold regions respond in their growth more
strongly to elevated temperatures than accessions
from warm regions, which are only moderately inhi-
bited by colder temperatures (Hoffmann et al., 2005).
Systematic correlation of phenotypes with environ-
mental gradients can indicate adaptation (Endler,
1977), and there are also latitudinal clines in light
sensitivity and altitudinal clines in flowering-related
traits (Maloof et al., 2001; Méndez-Vigo et al., 2011).
It has been similarly proposed that populations of
Arabidopsis near oceans or saline soils are more
likely to carry an allele at the HKT1 locus that in-
creases sodium accumulation in leaves (Baxter et al.,
2010). However, the accessions investigated were
unevenly sampled, information about soil salinity
at the places of origin was not available, and the
relationship between compromised activity of HKT1
and salt tolerance is complex (Mäser et al., 2002;
Berthomieu et al., 2003). Thus, the conclusions about
adaptation to salinity should be taken with the pro-
verbial grain of salt.
Reciprocal transplantation experiments have pro-

duced evidence for local adaptation in A. lyrata
(Leinonen et al., 2009, 2011). Somewhat surprisingly,
this approach, a gold standard in ecology (Turesson,
1922a), has so far only been sparingly applied in
Arabidopsis. This has recently been remedied, with
an impressive study in which hundreds of accessions
were grown at several different places in the native
range of the species (Fournier-Level et al., 2011). Al-
leles associated with superior fitness at each site were
most likely to be found in accessions originating near
that site. GWAS identified several candidates for sur-
vival and fruit number, although only one, the photo-
receptor gene PHYB, which affects light response, can
be easily connected to local adaptation based on prior
knowledge. Additional evidence for local adaptation
comes from GWAS for climate variables at the place
of origin combined with fitness tests at a single site
(Hancock et al., 2011). Both of these studies were
carried out predominantly with accessions from the
western European and Scandinavian part of the native
range, and it will be interesting to repeat these exper-
iments with a broader spectrum of accessions and test
locales.

OUTLOOK

Our knowledge of natural variation in Arabidopsis
has advanced tremendously in the past decade, with
an impressive set of genetic and genomic approaches
and resources that are now available (Fig. 6). In the
near future, the simultaneous application of different
strategies will lead to genetic variation increasingly
informing basic plant biology. Combined analyses of
global transcript and metabolite levels and biomass
across accessions and RIL populations is supporting
the reconstruction of functional networks (Wentzell
et al., 2007; Lisec et al., 2008; Rowe et al., 2008; Sulpice
et al., 2009, 2010). Integration of QTL data with such
information has shown that in addition to biosynthetic
and metabolic enzymes, upstream transcription fac-
tors of the MYB class contribute to diversity in
glucosinolate content (Sønderby et al., 2007) and that
the clock gene ELF3 has a role in shade avoidance
(Jiménez-Gómez et al., 2010). Another instructive ex-
ample of how natural variation can help to discover a
new regulatory pathway comes from the study of
xylem expansion (Sibout et al., 2008). The authors
noted that the xylem expansion loci colocalized with
flowering time QTL, which led them to hypothesize
that the onset of flowering causes xylem expansion in
both the shoot and the root. They subsequently con-
firmed such a model by transiently inducing the
activity of a central floral regulator. There is similarly
great promise in GWAS with the same material to
identify cases of pleiotropic action of natural sequence
variants.

I have also highlighted the many opportunities
Arabidopsis offers for the study of interactions be-
tween divergent genomes, whichmay both promote or
reduce outcrossing, and thereby affect the partitioning

Figure 6. Relationship between approaches to the study of genetic
variation.
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of genetic diversity into different lineages (and ulti-
mately into different species). So far, the parents for the
investigated crosses have largely been chosen ran-
domly.With increasing information about the genome-
wide and population-specific distribution of sequence
polymorphisms, more judicious and systematic choices
of genotype combinations should accelerate the pace
with which we can obtain insights into the fascinating
questions of hybrid performance.

Another important direction will be to phenotype
naturally growing plants in situ over several years
(Montesinos et al., 2009). Genotyping of very large
numbers of wild plants has become very affordable
with next-generation sequencing methods, which will
facilitate linking genotype and phenotype even on an
individual basis (Baird et al., 2008; Elshire et al., 2011).
An example for such strategies is a study that moni-
tored over 4 years the load of five different viruses that
had been known before to infect wild Brassicaceae
(Pagán et al., 2010). Such experiments are required to
test claims about fitness trade-offs between disease
resistance and growth (Tian et al., 2003; Todesco et al.,
2010). Finally, selection experiments are a tool that
should not be underestimated for their potential to
provide insights into favorable allele combinations
(Ungerer et al., 2003; Ungerer and Rieseberg, 2003;
Scarcelli and Kover, 2009; Fakheran et al., 2010).
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Alcázar R, Garcı́a AV, Parker JE, Reymond M (2009) Incremental steps

toward incompatibility revealed by Arabidopsis epistatic interactions

modulating salicylic acid pathway activation. Proc Natl Acad Sci USA

106: 334–339

Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technol-

ogies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev

Genet 7: 524–536

Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M (1998a) Anal-

ysis of natural allelic variation at flowering time loci in the Landsberg

erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics

149: 749–764

Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in

Arabidopsis: an underexploited resource for plant genetics. Trends Plant

Sci 5: 22–29

Alonso-Blanco C, Peeters AJ, Koornneef M, Lister C, Dean C, van den

Bosch N, Pot J, Kuiper MT (1998b) Development of an AFLP based

linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and

construction of a Ler/Cvi recombinant inbred line population. Plant J

14: 259–271

Al-Shehbaz I, O’Kane S Jr (2002) Taxonomy and phylogeny of Arabidopsis

(Brassicaceae). The Arabidopsis Book 1: 1–22, doi/10.1199/tab.001

Anastasio AE, Platt A, Horton M, Grotewold E, Scholl R, Borevitz JO,

Nordborg M, Bergelson J (2011) Source verification of mis-identified

Arabidopsis thaliana accessions. Plant J 67: 554–566

Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of

the flowering plant Arabidopsis thaliana. Nature 408: 796–815

Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C,

Molitor J, Shindo C, Tang C, et al (2005) Genome-wide association

mapping in Arabidopsis identifies previously known flowering time and

pathogen resistance genes. PLoS Genet 1: e60

Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA

(2009) Diversity of the Arabidopsis mitochondrial genome occurs via

nuclear-controlled recombination activity. Genetics 183: 1261–1268

Asimit J, Zeggini E (2010) Rare variant association analysis methods for

complex traits. Annu Rev Genet 44: 293–308
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Törjék O, Witucka-Wall H, Meyer RC, von Korff M, Kusterer B,

Rautengarten C, Altmann T (2006) Segregation distortion in Arabidopsis

C24/Col-0 and Col-0/C24 recombinant inbred line populations is due

to reduced fertility caused by epistatic interaction of two loci. Theor

Appl Genet 113: 1551–1561

Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred

family (HIF) analysis: a method for developing near-isogenic lines that

differ at quantitative trait loci. Theor Appl Genet 95: 1005–1011

Turesson G (1922a) The genotypical response of the plant species to the

habitat. Hereditas 3: 211–350

Turesson G (1922b) The species and the variety as ecological units.

Hereditas 3: 100–113

Ungerer MC, Linder CR, Rieseberg LH (2003) Effects of genetic back-

ground on response to selection in experimental populations of Arabi-

dopsis thaliana. Genetics 163: 277–286

Natural Variation in Arabidopsis

Plant Physiol. Vol. 158, 2012 21



Ungerer MC, Rieseberg LH (2003) Genetic architecture of a selection

response in Arabidopsis thaliana. Evolution 57: 2531–2539

van Der Schaar W, Alonso-Blanco C, Léon-Kloosterziel KM, Jansen RC,
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Review
Glossary

Allelic expression variation: the expression pattern or level of the alleles in the

hybrids is different from that in the parents. This can also refer to the

expression of homoeologous loci in interspecific hybrids.

Allopolyploid: an organism or individual that contains two or more sets of

genetically distinct chromosomes, usually by hybridization between different

species.

Amphidiploid: synonymous to allopolyploid. Contains a diploid set of

chromosomes derived from each parent. Strictly speaking, only bivalents are

formed in an amphidiploid, whereas multivalents are formed in an allopoly-

ploid.

Aneuploid: an individual in which the chromosome number is not an exact

multiple of the typical haploid set for that species.

Apomixis: only one parent (usually female) contributes genes to the offspring.

Autopolyploid: a polyploid created by the multiplication of one basic set of

chromosomes (in one species).

Epigenetics: non-Mendelian inheritance, heritable changes in gene expression

without changes in primarily DNA sequences.

Gametic imprinting: the expression of a gene is dependent on its parental

origin in the offspring.

Genomic shock: the release of genome-wide chromatin constraints of gene

expression, including activation of transposons in response to environmental

changes and genomic hybridization.

Heterosis: the greater vigor of growth, survival, and fertility in hybrids than in

the parents.

Homoeologous: chromosomes or genes in related species that are derived

from the same ancestor and coexist in an allopolyploid.

Homologous: genes or structures that share a common evolutionary ancestor.

Homoploid hybrids: hybrids formed between different species, in some cases

resulting in a derivative hybrid species without a change in chromosome

number.

Imprinting or genomic imprinting: unequal expression of maternal and

paternal alleles in the offspring.

Nonadditive gene expression: the expression level of a gene in an allote-

traploid is not equal to the sum of two parental loci (1 + 1 6¼ 2), leading to

activation (>2), repression (<2), dominance, or overdominance.

Orthologous: chromosomes or genes in different species that have evolved

from the same ancestor.

Paralogous: two or more genes in the same species that share a single

ancestral origin.

Paramutation: heritable changes in gene expression induced by allelic

interactions.

Ploidy: the number of basic chromosome sets.

Polyploid: an individual or cell that has two or more basic sets of

chromosomes.

X-chromosome inactivation: during mammalian development, the repression
Hybrids such as maize (Zea mays) or domestic dog
(Canis lupus familiaris) grow bigger and stronger than
their parents. This is also true for allopolyploids such as
wheat (Triticum spp.) or frog (i.e. Xenopus and Silurana)
that contain two or more sets of chromosomes from
different species. The phenomenon, known as hybrid
vigor or heterosis, was systematically characterized by
Charles Darwin (1876). The rediscovery of heterosis in
maize a century ago has revolutionized plant and animal
breeding and production. Although genetic models for
heterosis have been rigorously tested, the molecular
bases remain elusive. Recent studies have determined
the roles of nonadditive gene expression, small RNAs,
and epigenetic regulation, including circadian-mediated
metabolic pathways, in hybrid vigor, which could lead to
better use and exploitation of the increased biomass and
yield in hybrids and allopolyploids for food, feed, and
biofuels.

Polyploidy and hybrid vigor – a general view
Hybrids and polyploids (whole genome duplication) occur
in many plants and some animals. Hybrids are formed by
hybridizing different strains, varieties, or species.
Although heterosis or hybrid vigor is evolutionarily defined
as that the heterozygotes have higher fitness in a popu-
lation than the homozygotes, heterosis generally refers to
superior levels of biomass, stature, growth rate, and/or
fertility in the hybrid offspring than in the parents. The
latter definition is adopted in this review. Polyploidy refers
to an organism or cell that contains two or more sets of
basic chromosomes. An autopolyploid is formed by dupli-
cating a genome within the same species, such as potato
(Solanum tuberosum), alfalfa (Medicago sativa), and
sugarcane (Saccharum), whereas an allopolyploid is
derived from hybridization between different species fol-
lowed by chromosome doubling or from fusion of unreduced
gametes between species. An allopolyploid is a ‘doubled
interspecific hybrid’, leading to permanent fixation of het-
erozygosity and hybrid vigor. Many crops, including maize
(Zea mays) and sorghum (Sorghum bicolor), are grown
mainly as hybrids, and many other crops, such as bread
wheat (Triticum aestivum), upland cotton (Gossypium hir-
sutum), and oilseed rape (Brassica napus, also known as
canola), are grown as allopolyploids. Despite the evolution-
Corresponding author: Chen, Z.J. (zjchen@mail.utexas.edu).

1360-1385/$ – see front matter � 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tplants.20
ary significance of polyploidy and agricultural importance
of hybrid vigor, the mechanisms of polyploidy and hybrid
vigor are poorly understood. In this review, I outlined a
historical perspective of hybrids, allopolyploids, and hybrid
vigor and reevaluated genetic models for heterosis in
relation to the recent findings for the roles of nonadditive
gene expression, allelic expression variation (see Glossary),
of one of the two X-chromosomes in the somatic cells of females as a method

of dosage compensation.
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and small RNAs in hybrid vigor and incompatibility. The
molecular mechanisms for single-locus heterosis were high-
lighted using empirical data on altered epigenetic regula-
tion of master regulators such as circadian clock genes that
control physiological and metabolic pathways, leading to
increased growth vigor and biomass in hybrids and allopo-
lyploids. A better understanding of the mechanisms of
polyploidy and hybrid vigor will help us manipulate gene
expression and heterosis in hybrid plants and polyploid
crops that are directly relevant to the growing demand of
plant materials for food, feed, and fuels.

Hybrids, allopolyploids, and hybrid vigor – a historical
perspective
‘‘I raised close together two large beds of self-fertilised and
crossed seedlings from the same plant of Linaria vulgaris.
To my surprise, the crossed plants when fully grown were
plainly taller and more vigorous than the self-fertilised
ones.’’ – Charles Darwin (The Effects of Cross and Self
Fertilisation in the Vegetable Kingdom, 1876).

In his book [1], Charles Darwin systematically docu-
mented the growth, development, and seed fertility of
cross-pollinated plants compared with that plants for more
than 60 different species of plants, including pea (Pisum
sativum), tomato (Solanum lycopersicum), and tobacco
(Nicotiana tabacum). The results led him to conclude that
inbreeding was generally deleterious (later known as
inbreeding depression), and cross-fertilization was gener-
ally beneficial. Thirty-two years later, George H. Shull
published a landmark paper, entitled ‘The composition
of a field of maize’ [2], which marked the rediscovery of
hybrid vigor or heterosis and the beginning of applying
heterosis in plant breeding. Shull indicated that selfing
maize (corn; Zea mays) plants led to a reduction of overall
growth vigor and yield. The notionwaswell supported from
maize inbreeding experiments by EdwardM. East [3]. East
predicted that the low seed yield in the inbred lines would
impede hybrid production. Shull then demonstrated that
the hybrids had uniformly superior growth vigor and yield
to the inbreeding parents. The low seed yield in the inbreds
was improved by using double-cross (i.e. making the
hybrids by crossing two hybrids derived from two pairs
of inbred lines). Maize breeders continued to improve seed
production in inbred lines until there were sufficient seeds
tomake the single-cross hybrids with a significant increase
in yield [4]. Maize yield has steadily increased sixfold since
the introduction of hybrids in the 1920s [5].

Hybrid rice was first studied in 1964 in China. A rice
breeder, Yuan, Long Ping, initiated the research on hybrid
rice and heterosis in China. The technology of hybrid rice
seed production was developed in the 1970s. The most
commonly used hybrids are produced between different
varieties within a subspecies or between the subspecies
Oryza sativa ssp. indica and O. sativa ssp. japonica [6].
Although the grain quality of intraspecific hybrids could be
further improved, the yield from hybrid rice is �20%
greater than that from conventional rice and accounts
for 50% of the total rice area in many rice producing
countries, including China, India, and Indonesia.

When US scientists produced hybrid maize a century
ago, Russian scientists developed a new species named
58
Rhaphanobrassica from the hybrids between two plant
genera Raphanus and Brassica [7]. The cytologist G.D.
Karpechenko hoped to produce plants that would have the
roots of radish and the leaves of cabbage. The hybrids were
made from artificial crosses between two vegetables, the
radish (Raphanus sativus, 2n = 18) and the cabbage (Bras-
sica oleracea, 2n = 18). However, the F1 hybrids had the
roots of cabbage and the leaves of radish, and were highly
sterile, probably because of a failure in chromosome pair-
ing. A few fertile plants were found to be spontaneous
allotetraploids that contained 36 chromosomes, and these
plants had vegetative growth vigor. Unfortunately, the
new species was as short-lived as its creator, who was
executed in 1941 for his association with N. Vavilov in
an alleged ‘anti-Soviet group’.

Numerous Nicotiana hybrids and allopolyploids have
been produced. Some, such as Nicotiana glutinosa � N.
tabacum, were not vigorous but rather dwarf [8], whereas
others such as N. glutinosa � Nicotiana tomentosa had
great vigor [9].

Triticale (� Triticale Tschermak) is a successful man-
made interspecies hybrid or allopolyploid [10,11]. Triticale
is derived from crossing two cereals, hexaploid bread
wheat (T. aestivum) or tetraploid durum wheat (Triticum
turgidum) and rye (Secale cereale). In 1875, A.S. Wilson
reported the first hybrid between wheat and rye in Scot-
land (UK), and a decade laterW. Rimpau produced the first
doubled-fertile hybrid that showed little heterosis. In Rus-
sia during the crop season of 1918, thousands of natural
hybrids between wheat and rye appeared in many wheat
fields. For the next 16 years, G.K. Meister and his col-
leagues exploited these vigorous hybrids [11]. In 1935, M.
Lindschau and E. Oehler named triticale after Tschermak,
one of the rediscoverers of Mendelian Law. In theory,
triticale combines the high yield potential and good grain
quality of wheat with the disease and stress tolerance of
rye. Triticale has vigor in vegetative growth, biomass, and
tolerance to adverse conditions such as limited water and
poor soil conditions. It is grown mainly for forage and
animal feed because of poor baking quality and seed ferti-
lity, which need to be improved. Triticale is primarily
grown in Poland, Australia, Germany, France, and China.
The Centro Internacional deMejoramiento deMaı́z y Trigo
(CIMMYT) has a triticale program that is aimed at improv-
ing food production and nutrition in developing countries.
Triticale can be considered an energy crop because of its
increased levels of biomass heterosis.

Modern view of hybrids, allopolyploids, and hybrid
vigor
Humans have simply replicated a few examples of these
remarkable natural processes that have produced many
hybrid and polyploid plants not recorded in literature.
Estimates indicate that�10% of animal and�25% of plant
species hybridize with at least one other species [12]. A
recent study estimates that 15% of angiosperm and 31% of
fern speciation events are accompanied by an increase in
ploidy [13]. The proportion of polyploid flowering plants
might be 70% or more [14], and the majority (�75%)
are allopolyploids [15,16]. Many agricultural crops such
as wheat, cotton, and oilseed rape are allopolyploids.



Figure 1. Arabidopsis hybrids and allotetraploids. (a) Seedlings of the F1 hybrid

produced by crossing Arabidopsis thaliana Columbia� A. thaliana C24. (b) A stable

allotetraploid (in F8 generation) was maintained by self-pollination. (a) and (b) were

reproduced from [101] with permission. The F1 interspecific hybrid or allotetraploid

was produced by pollinating A. thaliana Ler autotetraploid with pollen from the

outcrossing Arabidopsis arenosa tetraploid [48,132]. (c) Typical flowers of the

allotetraploid and its progenitors, A. thaliana tetraploid (inset, diploid) and A.

arenosa. (d) Seeds of the allotetraploid and its progenitors, A. thaliana Ler tetraploid

and A. arenosa. Seeds of A. thaliana Ler diploid are also shown.
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Allopolyploids are presumably formed spontaneously by
crossing related species via unreduced gametes or via
spontaneous chromosome doubling of the resulting inter-
specific hybrids. A large number of hybrids spontaneously
form between wheat and rye in wheat fields, suggesting
that hybridization between species (and genera) occurs
frequently if growth and physiological conditions overcome
hybridization barriers. Interspecific hybrids and allopoly-
ploids have been formed in Tragopogon [17], Spartina [18],
and Senecio [19] in recent centuries. Allopolyploid Spar-
tina townsendii is derived from Spartina alternifolia and
Spartina stricta. The allopolyploid is so vigorous that it has
replaced the parental forms and spread all over southern
England (UK) and to France [18]. Senecio species are
native in France, and the allopolyploids have spread to
England [19]. Tragopogon is native to Euroasia; allopoly-
ploids were formed in the early nineteenth century in
North America and become invasive in local environments
[17]. Some allopolyploids such as Tragopogon [17] and
Brassica [20] are formed through multiple origins and
by reciprocal crosses (with different combinations of
maternal cytoplasm and paternal nucleus), whereas others
such as cotton [21], wheat [22], and Arabidopsis (Arabi-
dopsis thaliana) [23] are formed by a single or a few
hybridization events.

Durum wheat (T. turgidum, AABB, 2n = 4x = 28) is an
allotetraploid formed by crossing two extant diploid wild
grasses, Triticum monococcum or Triticum urartu (AA,
2n = 14) and a wild goatgrass such as Triticum searsii or
Triticum speltoides (BB, 2n = 14). The exact donor of the B
genome is unknown. Approximately 8000–10 000 years
ago, hexaploid wheat or bread wheat (T. aestivum,
2n = 6x = 42, AABBDD) was formed in farmers’ fields
through hybridization between a domesticated tetraploid
wheat and a wild diploid grass (Triticum tauschii, DD,
2n = 14). The hexaploid bread wheat has been domesti-
cated and cultivated since the history of human civilization
[24].

Cotton belongs to the genus Gossypium, which includes
about 45 species split across two ploidy levels, diploid
(2n = 2x = 26) and tetraploid (2n = 4x = 52) [21]. A polyploi-
dization event occurred�1.5 million years ago between AA
and DD extant diploid species, and the AADD allotetra-
ploids diverged into five species that are distributed
throughout the world [21]. Among them, upland or Amer-
ican cotton, Gossypium hirsutum, accounts for >95% of
cotton produced worldwide. Pima or Egyptian cotton, Gos-
sypium barbadense, accounts for <5% of the cotton pro-
duced. The AA progenitor species produce both lint (long)
fibers, which are spinnable into yarn, and shorter fibers
called fuzz. By contrast, the DD genome progenitor species
produce few lint fibers, which are initiated pre-anthesis,
but aremuch shorter in length than the lint fibers of the AA
genome progenitor. Interestingly, the allotetraploids pro-
duce more abundant and higher quality fibers than the
extant descendant species, suggesting strong selection on
polyploid cotton for fiber traits.

The genus Brassica offers a textbook example of reci-
procal hybrids and allopolyploids formed between three
diploid species, which is known as U-triangle [20]. The
three diploid species are Brassica nigra (2n = 2x = 16),
Brassica oleracea (2n = 2x = 18), and Brassica campestris
or rapa (2n = 2x = 20), and each allotetraploid species is
formed between two diploid species. For example,B. napus
(2n = 4x = 38) is an allotetraploid between Brassica rapa
and B. oleracea, Brassica juncea (2n = 4x = 34) is formed
between B. nigra and B oleracea, and Brassica carinata
(2n = 4x = 36) is formed between B. nigra and B. rapa.
Brassica napus (oilseed rape) has higher oil content and
better oil composition than its parents, probably because of
natural selection and human domestication for these traits
in the interspecific hybrids or allotetraploids.
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Hybrids and allopolyploids also occur in Arabidopsis, a
member of the Brassicaeae family. Many hybrids formed
between different ecotypes do not have obvious growth
vigor. Only a handful of hybrid combinations give rise to
growth vigor [25] and other traits such as cold tolerance
[26] (Figure 1a). The available genetic resources such as
recombinant inbred lines (RILs) have been used to dissect
and study quantitative trait loci (QTL) that are associated
with growth-related and life history traits [25,27,28].

Arabidopsis suecica (2n = 4x = 26) is a natural allote-
traploid formed between extant A. thaliana and Arabidop-
sis arenosa 12,000–300,000 years ago [29]. New
allotetraploids can be readily resynthesized by crossing
these two species A. thaliana (2n = 4x = 20) and A. arenosa
(2n = 4x = 32) (Figure 1b). During vegetative growth, the
allotetraploids are 3–5 times larger than A. thaliana and
twice as large as A. arenosa. Under long-day conditions
(light/dark of 16/8 h), the allotetraploids flower slightly
later than the late-flowering parent A. arenosa, and pro-
duce 18–25 rosette leaves, whereas A. arenosa has 10–12
leaves at flowering. The flowers of allotetraploids are
intermediate between those of the two parents. The seeds
are roughly twice the size of A. thaliana and slightly
smaller than that of A. arenosa, a natural outcrossing
autotetraploid. The seed germination rates are much
higher in the stable allotetraploids (after 7–8 generations
of selfing) than in A. arenosa. A large portion of A. arenosa
seeds are not fully developed, probably resulting from
failure of embryo and endosperm development as a con-
sequence of being an autotetraploid [30,31].

By definition, most heterozygous animals, including
humans, are hybrids that carry different alleles from
female and male parents. Mating among siblings leads
to accumulation of deleterious mutations and recessive
alleles, a phenomenon known as inbreeding depression
[32]. Although interspecific hybrids and polyploids are
rarer in animals than in plants [33,34], interspecific
hybrids do occur in mammals (e.g. a mule is a hybrid
between a horse and a donkey). Mammalian interspecific
hybrids are sterile, probably because of incompatibility
and/or imbalance in imprinting and sex chromosome
dosage, as proposed by H. Muller [33]. The number of
homoploid hybrid-species in animals is growing rapidly
[35]. They include a recent invasive sculpin, a hybrid fish
(Cottus gobio) derived from Cottus perifretum and Cottus
rhenanum, a cyrinid fish Gila seminuda that is formed
between Gila robusta and Gila elegans, Rhagoletis fruit-
flies, andHeliconius butterflies [36,37]. Like plant hybrids,
animal hybrids grow generally better than their parents.
For example, mules are generally tougher than horses, and
they endure heat better than horses. They have denser
muscling from their donkey parents than horses and have
fewer leg problems than horses, but they do not run as fast
as horses, a trait probably inherited from their donkey
parents.

Many interspecific hybrids have reduced viability and
fertility. The Bateson–Dobzhansky–Muller model suggests
that the hybrid incompatibilities are caused by inter-
actions between genes that have functionally diverged in
the respective hybridizing species [38,39]. These incompat-
ibilities appear concurrently with speciation or con-
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sequently after species divergence. The incompatibility
genes include hybrid lethality genes found in Drosophila
[40,41], Caenorhabditis elegans [42], and Arabidopsis
[43,44]. In Drosophila, the lethality in F1 hybrid males
is caused by the interaction between Lethal hybrid rescue
(Lhr), which has functionally diverged inDrosophila simu-
lans andHybridmale rescue (Hmr), which has functionally
diverged in Drosophila melanogaster [40]. In another
study, hybrid lethality is caused by the nucleoporin 160
kDa (Nup160) gene of D. simulans, which is incompatible
with one or more factors from the D. melanogaster X-
chromosome [41]. In C. elegans, the interactions between
two tightly linked but diverged alleles zeel-1 and peel-1
cause widespread genetic incompatibility [42]. Recent
work in Arabidopsis supports functional divergence be-
tween duplicate genes that lead to hybrid incompatibilities
between ecotypes [44] or hybrid necrosis in intraspecific
hybrids [43]. In mammals, hybrid incompatibilities are
related to abnormal expression patterns of imprinting
genes in interspecific hybrids in Peromyscus [45] or epige-
netic activation of retroelements inmarsupial hybrids [46].
In plants, some imprinted genes were abnormally silenced
in Arabidopsis interspecific hybrids [31,47], and many
protein-coding genes are epigenetically regulated in allo-
tetraploids [48,49].

For genetically viable hybrids, the degree of heterosis is
proportional to the genetic differences in two parental
strains [50]. In other words, the levels of heterosis increase
as the genetic distances between the parents increase.
After evaluating the phenotypic data from 37 genera,
including Zea, Solanum, and Nicotiana, E.M. East
(1936) [50] noted that interspecific hybrids generally show
more heterosis than intraspecific hybrids, if the genetic
difference between the species or genera does not prevent
them from forming compatible hybrids. The hybrids
formed between different subgenera show more heterosis
than the hybrids formed between species within the same
subgenera. If the hybrids are incompatible, they are dwarf
and stunted, probably because dramatic differences in
growth and reproductive development inherited from the
divergent parents fail to be reconciled. Indeed, the hybrids
formed between subgenera often have more heterosis as
well as more dwarfs. For example, most intergenic or
interspecific hybrids are abnormal, and yet the greatest
amount of heterosis is found in the hybrids derived from
Raphanus and Brassica [7]. In rice, the hybrids between
two subspecies show more heterosis than the hybrids
between varieties within a subspecies. However, the notion
may not be generalized across all hybrids. In maize (Z.
mays) and tobacco, although the varieties (inbred lines) are
genetically similar, the hybrids formed between different
combinations of varieties show dramatic levels of heterosis.
This suggests that the interaction between a few genes or
the combination of a few genes in a genetic cross plays an
important role in heterosis, as observed in tomato [51].
Alternatively, large-scale recombination suppression
accompanied by a high level of residual heterozygosity
could be associated with inbreeding depression and hetero-
sis in maize [52,53]. Notably, genetic mechanisms respon-
sible for heterosis may be different between the species
that are naturally self-pollinating and out-crossing.
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Heterosis is more predominant in outcrossing than
inbreeding species, and the inbreeding populations do
not have obvious heterosis of fitness.

Notably, heterosis in interspecific hybrids is perma-
nently fixed in the respective allopolyploids in which the
chromosomes are doubled. This is facilitated by many
allopolyploids that become self-pollinating irrespective of
pollinating patterns in the parents. Thus, the heterosis is
heritable and selected in the allopolyploid progeny.
Although heterosis in interspecific hybrids and allopoly-
ploids is generally high, the heterosis in autopolyploids is
not obvious [50,54]. In Arabidopsis, diploids and autote-
traploids often have similar morphology, leaf size, and
plant stature. The autotetraploids have slightly larger
flowers and seeds (Figure 1c and d), and flower later than
the diploids, depending on the combination of genotypes.
For example, the difference in flowering time between a
diploid and an autotetraploid is greater in Columbia eco-
type than in Landsberg erecta ecotype.

The degree of heterosis may shift during different stages
of growth and development [51]. If growth vigor is shown in
Figure 2. Genetic models and nonadditive gene expression for heterosis. (a) The domin

parents that contain only one pair of dominant alleles (aaBB and AAbb) because the

overdominance model. The interactions between heterozygous alleles in F1 (AA’BB’) ca
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the early stages, it is often exhibited not only in seedlings,
vegetative tissues, and organs such as rosettes, and overall
biomass, but also in the late stages of reproductionsuchas in
the flowers and fruits. In some plants, heterosis in vegeta-
tive growth is different from that in reproductive develop-
ment because they are controlled by different sets of genes
and regulatory pathways. It is notable that biomass hetero-
sis in plants is largely dependent on flowering time. For
example, late flowering and indefinite inflorescent plants
often have greater biomass than the early flowering and
definite inflorescent plants. The flowering time is controlled
by a few loci in inbreedingArabidopsis and rice [55–58]. The
single-locus heterosis in tomato could be controlled by a
flowering locus T (FT)-like locus that regulates the tran-
sition from definite to indefinite inflorescence [51]. In out-
crossing maize, the flowering time is mediated by additive
effects of numerous (two-dozen or more) QTLs, each with
onlya small effect on the trait [59]. Interestingly, inB.napus
late flowering is heterotic, whereas in maize hybrids early
flowering is heterotic, suggesting different effects of gene
actions (repression or activation) on heterosis.
ance model. The F1 with both dominant alleles (AaBb) of two loci is superior to the

superior or dominant allele complements the inferior or recessive allele. (b) The

uses superior phenotypes compared with the combinations of homozygous alleles

mbination of dominant alleles (AaBb) in repulsion (AbC/aBC) in the F1 acts as

nce of dominant alleles in F1 complements the recessive alleles, leading to a better

type is additive. Abbreviations: MPV, mid-parent value (1/2P1 + 1/2P2); P1, parent 1;

phenotype. (e, f) Nonadditive expression. (e) Gene repression. The expression of a

sion of a gene, genotype, or phenotype is higher than the MPV, which includes

activation also explain epistatic interactions. Relative expression levels (1, 2, and 3)
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Genetic models for hybrid vigor
The genetic basis for hybrid vigor or heterosis has been
debated for over a century, but little consensus has been
reached. Several hypotheses including dominance, over-
dominance, and pseudo-overdominance are available to
explain the phenomenon of hybrid vigor. According to
the dominance model [60,61], inbred parents contain
inferior or deleterious alleles in several loci that inhibit
overall good performance, whereas in the hybrids these
inferior alleles in one parent are complemented by the
superior or dominant alleles from the other parent
(Figure 2a). As a result, the hybrids have an overall better
performance than the parents. The model is based on the
dominance (wild type) and recessive (mutant) aspect of
trait performance, and genetic complementation is likely to
occur in the combination of alleles from respective parents.
Moreover, one can apply statistical models to dissect addi-
tive and dominant components of genetic variation. In
theory, the parent that contains homozygous superior or
dominant alleles for all possible loci would perform better
than the hybrids, but hybrid maize breeding practice has
indicated otherwise. In spite of dramatic improvement of
inbred parents by eliminating deleterious alleles, the het-
erotic (or allelomorphic) responses in the hybrids often
exceed those in the parents [50]. Maize is naturally out-
crossing and requires a certain amount of combinational
dominant and recessive alleles in some genetic loci to avoid
inferior performance or lethality from being completely
inbred. In other words, the parent with recessive alleles
in all genetic loci would be deleterious, as would the parent
with dominant alleles in all genetic loci.

The overdominance model [2,50,62] suggests that novel
allelic interactions within each of many genetic loci lead to
superior function over the homozygous states in the inbred
parents (Figure 2b). This model is favored because hybrids
always outperform the parents that have been excessively
inbred and selected and contain many superior or domi-
nant genetic loci [50]. Moreover, it is the allelic combi-
nation in the hybrids that determines the levels of
heterosis. The genetic composition of inbred parents does
not necessarily predict the levels of hybrid vigor. A chal-
lenge for this model is to identify the best combination of a
single genetic locus or a few loci that contribute to the
overall heterosis, which seems to contradict the hybrid
performance of many agronomic traits that are controlled
by multiple genetic loci.

A recent study [63] has suggested an alternative
model, pseudo-overdominance (Figure 2c). The overdo-
minance is associated with the complementation of two
or more linked dominant and recessive alleles in repul-
sion, in which the dominant and recessive alleles are
located on opposite homologs of the two genes, acting as
overdominance. The heterosis associated with pseudo-
overdominance can dissipate in the selfing progeny
because genetic recombination leads to the dissociation
of the alleles from the repulsion state, which is exactly
what is observed in a study with tomato hybrids [63].
This pseudo-overdominance can also arise from numer-
ous alleles in recombination suppression regions where
good and bad allele combinations are in repulsion
[52,53].
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These genetic models have limitations. For example,
heterosis in rice has been found to be associated with three
different models, namely, dominance [64], overdominance
[65], and epistasis [66]. These different conclusions are
probably related to the complexity of genetic bases and
trait variability for heterosis. First, heterosis can result
from epistatic interactions among the alleles in different
loci, which cannot be easily explained by statistical models.
Epistasis is involved in many QTLs associated with
inbreeding depression and heterosis in maize [67] and rice
[66,68]. Second, heterosis is affected by genetic back-
grounds. For example, one of the two QTLs controlling
differences in morphology and inflorescence architecture
between maize and its ancestor (teosinte, Zea mays ssp.
parviglumis) has strong phenotypic effects in the teosinte
background but reduced effects in the maize genetic back-
ground [69]. When the two QTLs are combined into one
genotype, both morphology and inflorescence architecture
are altered. In an extensive analysis of heterosis for dry
biomass in 63 Arabidopsis accessions that were crossed
with three reference lines (Col-0, C24, and Nd), 29 out of
169 crosses had significant heterosis for shoot biomass, and
the biomass heterosis was higher in some hybrids (e.g. Col-
0 � C24) than in others [25]. This is consistent with the
higher levels of growth vigor in interspecific hybrids than
in the ecotype hybrids (Figure 1). Third, altered levels of
heterosis observed in different genetic backgrounds also
suggest a role for maternal and paternal effects of genetic
loci in hybrid performance [70], although allelic expression
variation is not commonly observed in reciprocal crosses
[71,72]. However, a recent study suggested otherwise, and
nearly 50% genes showed paternal dominant expression
patterns in the seedlings of maize reciprocal hybrids [73],
which is inconsistent with similar phenotypes observed in
reciprocal hybrids [54,71,72]. It is likely that some of these
changes in gene expression may dissipate over time.
Fourth, heterosis is affected by many genetic loci. Statisti-
cal and genetic models cannot accurately estimate the
relative contribution of individual loci to a particular path-
way or trait. Some transcription factors and chromatin
proteins may control the expression of many other genes in
various biological pathways. Finally, these genetic models
do not explain well the heterosis in polyploid plants
because allelic and genomic dosage may play a more
important role than the allelic complementation or inter-
actions. Changes in dosage-dependent gene expression
may be more profound than alteration in allelic inter-
actions. In maize, the increased number of genes and
the genome dosage appears to have a negative effect on
growth vigor and increased levels of inbreeding depression
[54].

Nonadditive gene expression in the hybrids and
allotetraploids
At gene expression levels, the dominance model suggests
that the expression of genes in the hybrids is a result of
combined or additive expression of two alleles in the
parents (e.g. 1 + 1 = 2) (Figure 2d), whereas the overdomi-
nance model indicates that allelic interactions in the
hybrids lead to nonadditive expression of the alleles
derived from the parents (1 + 1 6¼ 2) (Figure 2e and f).
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If the interactions lead to positive effects or gene acti-
vation, the outcome is expected to be 1 + 1 >2. If the
interactions result in negative effects or gene repression,
the expected outcome would be 1 + 1 <2. The expression of
some genes falls in the range between additive and non-
additive expression. Nonadditive expression explains
positive as well as negative epistatic interactions.

Nonadditive expression of 30 selected genes was studied
in maize diploid and triploid hybrids using RNA blots and
normalized expression values with internal controls [74].
The expression values of 19–20 genes in reciprocal hybrids
are different from the mid-parent values (MPV). The tran-
script levels in the diploid hybrids correlate negatively
with the levels in diploid inbreds. Moreover, genome
dosage affects transcript levels in diploid and triploid
hybrids. The transcript levels are higher in triploids than
in diploids. The transcript levels for nearly half of the
genes tested are different in reciprocal triploid crosses,
suggesting strong maternal effects of gene expression in
triploid hybrids.

In a study using cDNAmicroarrays,�10% of ESTs were
expressed differently between the two inbred parents [75].
Among them, 78% (1062 of 1367) of ESTs were additively
expressed in the hybrids relative to the MPV, and 22%
were nonadditively expressed. The expression patterns
include all possible modes of nonadditive expression: high-
and low-parent dominance, underdominance, and overdo-
minance. The data suggest that multiple molecular mech-
anisms, including overdominance, contribute to heterosis.
In a similar study using microarrays, �80% of the genes
that were expressed differently between the two parents
were additively expressed in the hybrids [72]. However,
among 20% of nonadditively expressed genes, many were
expressed at levels within the parental range. Few genes
showed expression levels higher than the high parent or
lower than the low parent. Further analysis of allele-
specific expression patterns in the hybrid indicates that
gene expression variation is largely associated with cis-
regulatory variation. The data suggest that cis-regulatory
variation between the alleles maintains allelic expression
levels in the F1 hybrid, leading to additive expression.
Another study [76] suggested that hybrid yield and hetero-
sis are associated positively with the proportion of addi-
tively expressed genes, negatively with the proportion of
paternally expressed genes, and not correlated with over-
or under-expression of some specific genes. These different
conclusions related to the relative contribution of additive
and nonadditive expression to the hybrid performance in
similar studies using the same pair of inbred parentsmight
be caused by developmental variation among different
tissues examined, various normalization methods and/or
different statistical tools used in microarray and RNA blot
analyses. Moreover, it is not surprising to identify positive
effects of additive expression on heterosis because the
proportion of additively expressed genes is generally high
(�80%).

Allelic expression variation varies from unequal expres-
sion of both alleles (biallelic) to expression of a single allele
(monoallelic) in the hybrids, which is reminiscent of devel-
opmental reactivation of silenced rRNA genes in Brassica
allotetraploids [77] and organ-specific reciprocal silencing
in cotton allotetraploids [78], although they involve two
homoeologous loci. In maize hybrids, the allelic expression
variation can respond to planting density and drought
stress [71]. For example, biallelic expression for seven of
15 genes examined is found in a genetically improved
modern hybrid, whereas mono-allelic expression is
observed in a less improved old hybrid. The two alleles
of stress responsive genes in the hybrid are differentially
expressed in response to density and drought stresses.
Although maternal or paternal effects on allelic expression
are not commonly observed in vegetative tissues and seed-
lings, expression of many genes (�8%) deviates from a 1:1
ratio, the expected ratio in the hybrids of reciprocal crosses,
and 2:1, the expected ratio in three stages of endosperm
development in the hybrids of reciprocal crosses [70]. These
genes resemble maternally or paternally expressed genes,
which is probably associated with genomic imprinting. The
gene encoding a no-apical-meristem (NAM) related protein
1 (nrp1) is expressed only in the endosperm, in which the
maternally transmitted alleles are expressed, whereas the
paternally transmitted alleles are silenced throughout the
three developmental stages.

Genome-wide nonadditive expression of homoeologous
loci has been extensively studied in many interspecific
hybrids and allopolyploids, including Arabidopsis, Bras-
sica, cotton, Drosophila, Senecio, and wheat (see review
and ref. [79]). Although the levels of gene expression
detected vary from one experimental species to another,
the trends are similar. The levels of differentially
expressed genes between the related species are higher
than those within species. Over 15–50% of genes are
differentially expressed between the related species in
plants or animals. The number of nonadditively expressed
genes ranges from 5–38% in Arabidopsis allotetraploids to
�30% in cotton allotetraploids [80]. In Senecio, the number
of differentially expressed genes between the natural and
synthetic allopolyploids can be as high as �60% [81],
although some of this could be related to genotypic differ-
ences between synthetic and natural allopolyploids. In
Arabidopsis allotetraploids, over 65% of the nonadditively
expressed genes are repressed, and over 94% of the
repressed genes in the allotetraploids are expressed at
higher levels in A. thaliana than in A. arenosa, consistent
with the silencing of A. thaliana rRNA genes subjected to
nucleolar dominance [77] and with overall suppression of
the A. thaliana phenotype in the synthetic allotetraploids
and natural A. suecica [82]. The data suggest transcrip-
tome and phenotypic dominance of A. arenosa over A.
thaliana in the allotetraploids. In cotton, the A-genome
ESTs are selectively enriched in the allotetraploid [83], a
result consistent with the production of long lint fibers in
A-genome species. However, in another study, the expres-
sion of homoeologous loci is shifted toward the D-genome
species [80], which does not produce spinnable fibers.
Moreover, �20% of the genes show locus-specific expres-
sion patterns in different stages of fiber development. The
data support the role of developmental regulation in the
expression rRNA genes and protein-coding genes found in
Arabidopsis and Brassica allotetraploids [77,82].

Genome-wide gene expression data collectively support
the genetic models of dominance and overdominance at the
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Box 1. Central role of the circadian clock in plant growth and development

Every organism under the sun lives by day and night with a constant

cycle of �24 h. Plants, in particular, during the day, convert sunlight,

water, and carbon dioxide into carbohydrates and eventually

biomass, and emit oxygen as a byproduct of photosynthesis. At

night, plants store, transport, and use the carbohydrates, and

release energy, carbon dioxide, and water as a byproduct of

respiration. Moreover, the temperature and growth conditions

change during day and night. These rhythmic cycles are known as

the circadian clock, which is derived from the Latin words ‘circa’

(about) and ‘dies’ (day) [136]. The scientific literature on circadian

rhythms began with the daily leaf movements of heliotrope plants

even in continuous darkness [137], suggesting an internal circadian

rhythm. Figure I (a) Internal time keepers or circadian clock

regulators include CCA1, LHY, and TOC1 in a major negative

feedback loop (Loop I) of the circadian oscillator in Arabidopsis,

which produces a self-sustaining and constant periodicity of 24 h,

even when plants are grown under constant light and temperature.

CCA1 Hiking Expedition (CHE) has recently been shown to be a

negative regulator of CCA1 [90]. In addition to CCA1, LHY, and TOC1,

other regulatory loops include one (Loop III) consisting of PSEUDO-

RESPONSE REGULATOR (PRR) 7 and 9, another (Loop II) of GI and

unknown protein, and another (Loop IV) of ZEITLUPE (ZTL), GI, and

PRR3. Figure I (b) Diagram of CCA1 and LHY (red line) and TOC1

(green line) expression rhythms in a 24-h clock with 16 h of light

(open bar) and 8 h of darkness (filled bar). Zeitgeber (ZT) is German

for time giver, and dawn is defined as ZT0. Period is the time for

completing one cycle of rhythms and is shown from one peak to

another (or form one trough to another). The expression amplitude

of rhythm is defined as one-half the distance between the peak and

trough. Many aspects of plant physiology, metabolism, and devel-

opment are under circadian control, and a large proportion of

transcriptome (from 15% up to �90%) shows circadian regulation

[96,98]. For further information, see the many excellent reviews in

the field, including historical perspectives of circadian rhythms [94],

how plants tell time [138], regulation of output from the circadian

clock [139], and the most recent reviews of circadian systems in

higher plants [95,140]. Figure I. Central oscillators of circadian clock and their diurnal expression patterns.
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levels of individual genes but do not provide mechanistic
insights into the molecular basis for heterosis.

A molecular clock model for growth vigor in hybrids and
allopolyploids
At the molecular levels, both dominance and overdomi-
nance models suggest nonadditive expression of alleles in
the hybrids relative to the parents. The dominant mode of
gene expression represents one extreme: monoallelic
expression in the hybrids, whereas overdominant mode
of gene expression indicates another: biallelic expression in
the hybrids at levels either higher than the high-parent
value or lower than the low-parent value. Neither the
dominance nor the overdominance model can explain the
epistatic interactions among different genes and gene
products that are involved in the same or different regu-
latory and/or biological pathways, leading to an altered
trait or phenotype. Moreover, heterosis changes over time
or during growth and development of plants and animals.
For example, heterosis in biomass such as vigorous growth
in seedlings, roots, and other vegetative tissues may not be
directly translated into large fruits or seeds because differ-
ent sets of genes in the biological pathways control vege-
tative growth and reproductive development, although
some pathways are intricately related. Therefore, a mol-
ecularmodel for heterosis should define individual genes in
specific regulatory pathways. One model is that epigenetic
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regulation induces nonadditive expression of one or more
key regulator genes in the hybrids, which in turn mediates
the expression of many other genes in the same regulatory
networks associated with changes in developmental and
physiological pathways, leading to heterosis in specific
stages of growth and development. As a result, nonadditive
expression of many genes collectively in various biological
pathways gives rise to an overall vigor of vegetative growth
and yield.

Circadian clocks affect many physiological and develop-
mental processes, including various metabolic pathways
and fitness traits in animals and plants, and photosynthesis
and starch metabolism in plants (see Box 1) [84–87]. In
Arabidopsis, the central oscillators of the circadian clock
consist of negative regulators CIRCADIAN CLOCK
ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPO-
COTYL (LHY) [88,89] and reciprocal positive regulators
TIMING OF CAB EXPRESSION 1 (TOC1), CCA1 Hiking
Expedition (CHE) [90], and GIGANTEA (GI) [89,91,92].
CHE, a transcription factor belonging to the TCP class,
represses CCA1 expression [90]. CCA1 and LHY are par-
tially redundant MYB-domain transcription factors with
incompletely overlapping functions [88,89]. CCA1 and
LHY negatively regulateTOC1 andGI expression, whereas
TOC1 binds to the CCA1 promoter and interacts with CHE,
positively regulating CCA1 and LHY expression [89–91,93].
This circular feedback regulation affects the rhythms,



Figure 3. Growing around the clock: a molecular mechanism for hybrid vigor. A

molecular clock model explains the basis of heterosis. The internal clocks of plants

are controlled by multiple feedback loops, including a major loop that consists of

two transcription repressors CCA1 and LHY with redundant but incompletely

overlapping functions and feedback regulators TOC1 and CHE (see Box 1). The

clock receives input signals such as lights and temperature and controls output

traits and pathways, including photosynthesis and light signaling, flowering,

starch biosynthesis and metabolism, responses to stresses and hormones, and

carbon allocation and nitrogen assimilation, through the expression of evening

element (EE) or CCA1 binding site (CBS)-associated genes. The expression

amplitude and periodicity of circadian clock regulators can be changed or fine-

tuned in response to input (external) signals such as light and temperature, as well

as internal mechanisms such as allelic expression variation. L and D indicate the

length of light (L) and darkness (D) in a circadian cycle. In the hybrids, the allelic

interactions between parent 1 (P1) and parent 2 (P2) induce epigenetic repression

of CCA1 and LHY expression amplitudes (red dashed line) and upregulation of

TOC1 expression amplitudes (green dashed line) relative to the expression values

in the parents (solid red and green lines, respectively), whereas the periodicity of

the clock remains the same [101] because maintaining clock periodicity and

rhythm is important for plant growth and fitness [84]. The reduced amount of

CCA1 repressors in the hybrids during the day induces the expression of circadian-

clock-associated genes (CCGs) in various output pathways, including chlorophyll

biosynthesis, and starch metabolism and degradation. As a result, the hybrids

produce more chlorophyll and starch than the parents, which promotes vegetative

growth and morphological vigor. The CCA1 expression amplitude is regulated by

chromatin modifications, where the levels of active histone marks are reduced

during the day and increased at night. The hybrid-induced changes in the CCA1

expression amplitude are reminiscent of expression alterations in response to

changes in input signals such as light (intensities) and temperature. The clock

modulates auxin signaling and responses [141]. In addition, the output pathways

also produce feedback regulation for the internal clocks. For example, circadian

oscillator regulation requires organic nitrogen signals [142] and free cytosolic Ca2+

[143]. Allelic interactions in the hybrids induce superior performance of

physiological pathways for chlorophyll biosynthesis and starch metabolism. The

overdominant performance is caused by epigenetic repression (nonadditive

expression) of a key regulator in the feedback loop of the clock oscillator, which

mediates the downstream genes in chlorophyll biosynthesis and starch

metabolism. Clock-mediated heterosis is probably universal because internal

clocks mediate physiological and metabolic pathways in plants and animals.

Moreover, this model can be extrapolated to explain superior traits of many other

biological pathways.
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amplitude, and/or period of the circadian clock as well as its
input and output pathways in Arabidopsis [94,95]. At least
�15% of genes, including those involved in photosynthesis
and starch metabolism [96,97], and up to 90% of transcrip-
tome [98] are affected by the circadian clock regulators.
Moreover, day-length and circadian effects on transitory
starch degradation and maltose metabolism correlate with
the diurnal expression patterns of these metabolic genes
[99]. Consequently, maintaining circadian regulation
increases CO2 fixation and growth, whereas disrupting
circadian rhythms reduces fitness [87,100].

Analyzing genome-wide nonadditively expressed genes
in Arabidopsis allotetraploids [82], the authors [101] found
that among�130 genes upregulated in the allotetraploids,
two thirds of them in their upstream regions contain at
least one (CCA1)-binding site (CBS; AAAAATCT) or eve-
ning element (AAAATATCT) [96]. One subset of the genes
encodes protochlorophyllide (pchlide) oxidoreductases a
and b (PORA and PORB) that mediate the light-requiring
step in chlorophyll biosynthesis in higher plants [102].
Both PORA and PORB are upregulated in the allotetra-
ploids. In A. thaliana, PORA and PORB are expressed at
high levels in seedlings and young leaves, and overexpres-
sion of PORA and PORB increases chlorophyll a and b
content [103]. The other subset of genes encodes all major
enzymes in starch metabolism and sugar transport
[104,105], many of which contain EE/CBS and are upre-
gulated in the allotetraploids. As a result, the allotetra-
ploids accumulate �60% more starch than the low parent
and �30% more than the high parent, and �70% more
chlorophyll than the low parent. The starch amount in the
allotetraploids is 3 to 5 timesmore than the low parent and
70% more than the high parent, and the sugar content is
50–100% more in the allotetraploids than in the parents.

The study further established a direct connection be-
tween epigenetic repression of CCA1 and LHY and upre-
gulation of the genes involved in the light-requiring
processes of photosynthesis, starch metabolism, and sugar
biosynthesis in the hybrids and allopolyploids [101]. This
daytime-specific repression of clock genes has an epige-
netic cause because it correlates with loss of histone modi-
fications (e.g. H3K9 acetylation and H3K4 dimethylation)
that are normally associatedwith active transcription from
the CCA1 and LHY genes. By contrast, upregulation of
TOC1 and GI correlates with increased levels of H3K9
acetylation and H3K4 dimethylation. Interestingly,
similar repression of CCA1 and LHY and upregulation
of TOC1 are also found in the F1 hybrids made by crossing
C24 and Colombia strains of A. thaliana without ploidy
changes. However, the levels of changes in gene expres-
sion, chlorophyll, and starch content in the hybrids are
lower than in the allotetraploids. This observation is con-
sistent with a positive correlation between the levels of
heterosis and genetic distances among the parents used in
the hybrids. Similar expression changes of a CCA1-like
gene were observed in maize hybrids to those observed in
Arabidopsis hybrids [101] (unpublished data).

Altering the clock amplitude but maintaining the rhyth-
mic phase increases growth vigor in the hybrids and allo-
tetraploids (Figure 3). Expressing TOC1::CCA1 and
TOC1::cca1(RNAi) in the diploid transgenic plants mimics
65



Review Trends in Plant Science Vol.15 No.2
alteration in the CCA1 expression amplitude. Repressing
or overexpressing CCA1 under the TOC1 promoter might
also slightly affect rhythmic phase and have pleiotropic
(but mild) effects on flowering time and plant growth [101],
but these effectsmay beminimal. Completely knocking out
clock-genes affects other aspects of plant growth and de-
velopment, and the plants may lose their fitness and
growth vigor. Although the results obtained in cca1 and
lhy mutants also show increased growth vigor in the early
stages [101], over time the constant loss of rhythmic phase
in the mutants induces many other changes, including
flowering time and physiological syndromes, leading to
low fitness and small plants in the late stages of devel-
opment [84]. The mutant plants are likely to develop
indirect effects independent of original cca1 lhy double
mutations such as flowering time defects [106]. Moreover,
the genetic interaction between CCA1 or LHY and TOC1 is
complex. TOC1 mediates the floral transition in a CCA1 or
LHY-dependent manner, whereas CCA1/LHY function
upstream of TOC1 in regulating a photomorphogenic pro-
cess [107]. In Arabidopsis C24 � Columbia F1 hybrids,
heterosis for biomass (leaf size and dry shoot mass) is 2–

3 times higher at high light intensity than at low and
intermediate light intensities [25]. The relative growth
rates of the hybrids are high in the early developmental
stages under low and intermediate light intensities and
constantly high over the entire vegetative phase under
high light intensity. The above data suggest other factors
such as light intensities and light signaling pathways
affect the degree and early onset of heterosis for biomass.

Do the changes in circadian clock genes affect other
traits in hybrids? Many life history traits, including plant
height and leaf length and number, were coincidently
mapped in the locations of CCA1 (bottom of chromosome
2) and LHY (top of chromosome 1) in the RILs derived from
Ler and Cvi [27] (unpublished data). Another locus CRY2
in the vicinity of LHY was also a candidate for fruit length
and ovule number but not for other traits [28], suggesting a
role of epistatic interactions amongCCA1, LHY, andCRY2
in life history traits. As noted above, heterosis is mani-
fested in many different forms during growth and devel-
opment. Other key regulators and/or environmental
factors such as light intensities, photoperiod, nutrients,
and the conditions for optimal growth can also affect many
other pathways and traits such as plant stature, flower
size, seed fertility, and yield.

How is the allelic or locus-specific expression of CCA1
and other clock regulators established in the hybrids and
allotetraploids? Although allelic expression variation of
clock genes has not been studied in the Arabidopsis
hybrids, the locus-specific expression was observed in
two allotetraploid lines examined [101]. In respective
parents, A. thaliana and A. arenosa loci were equally
expressed. In the allotetraploids A. thaliana CCA1
(AtCCA1) was repressed 2–3-times more than the A. are-
nosa CCA1 (AaCCA1) whose expression was slightly
reduced. Similarly, the repression of AaLHYwas 1.5-times
more than the AtLHY in the allotetraploids. Conversely,
AtTOC1 and AtGI loci were upregulated more than
AaTOC1 and AaGI in the allotetraploids. The data collec-
tively indicate that A. thaliana genes are more sensitive to
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expression changes (repression or activation) than the
homoeologous A. arenosa genes through epigenetic modi-
fications in the allotetraploids [82,101,108]. Moreover,
both A. thaliana C24 and Columbia alleles in the hybrids
or both A. thaliana and A. arenosa loci in the allotetra-
ploids are expressed but either upregulated or repressed
relative to the MPV, suggesting a role for expression over-
dominance or repression in hybrid vigor.

Altering expression of a few genes in the circadian clock
regulation to promote growth vigor is reminiscent of single
locus heterosis, which has been documented for the erecta
and angustifolia loci in A. thaliana [109]. These loci also
show an overdominant mode of expression and encode
regulatory proteins, namely, a receptor-like kinase [110]
and a transcription factor [111], respectively. This offers a
solution to clone QTLs that have been extensively studied
in the hybrids of Arabidopsis, tomato, maize, and rice. For
example, the genetic basis of heterosis in an elite rice
hybrid is controlled by single-locus heterotic effects and
dominance-by-dominance interactions [112].

A good example is the domestication of maize (Z. mays
spp s. mays), which involves a transition of apical domi-
nance (a collection of stem cells for the development of main
stemand axillary branches) from its probablewild ancestor,
teosinte (Z.mays ssp.parviglumis). The apical dominance is
controlled by amajor genetic locus named teosinte branched
1 (tb1), which encodes a protein with homology to the
cycloidea insnapdragon. tb1 represses thegrowthof axillary
organs and promotes the formation of female inflorescences.
The maize allele of tb1 is expressed at twice the level of the
teosinte allele, suggesting that gene regulatory changes
underlie the evolutionary divergence of maize from teosinte
[113]. Another example is the domestication of tomato
(Solanaceae). The wild type produces few-flowered inflor-
escences, but the mutants compound inflorescence (s) and
anantha (an) are highly branched, and s produces hundreds
of flowers [51]. The S and AN encode a homeobox transcrip-
tion factor and an F-box protein, respectively. Apical dom-
inance and branch formation are controlled by a few
regulatory genes, suggesting a molecular basis for single-
locus heterosis. However, the connection between the gene
function and morphological variation in these studies has
yet to be established, and also it is debatable whether the
control of inflorescence architecture (e.g. from definite to
indefinite) by promoting progression of an inflorescence
meristem to floral organs is part of heterosis or develop-
mental variation.

Allelic activation and repression through cis- and trans-
acting effects in hybrids or allopolyploids is reminiscent of
paramutation [114,115], X-inactivation [116,117], and
repeat-associated gene silencing [118]. However, in
hybrids and allopolyploids allelic- and locus-specific
expression occurs on a genome-wide scale, which occurs
on any chromosomes but does not occur at every locus in a
specific chromosome or even in a small chromosomal seg-
ment [49]. In some cases, epigenetic regulation is stochas-
tic and takes several generations to establish [48]. In
contrast to random inactivation of paternal and maternal
X-chromosomes in somatic cells, there is a dominance
hierarchy for locus-specific gene expression in allopoly-
ploids. The expression of homoeologous genes, including
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rDNA loci, is dominant from one parent over the other in
the interspecific hybrids or allopolyploids. The dominance
phenomenon is similar to paramutagenic and paramutable
alleles in paramutation, but the expression of two alleles
and loci in the hybrids and allopolyploids is additive,
whereas the paramutagenic allele exerts trans-genera-
tional effects on the expression of the paramutable allele.
Compared with epigenetic silencing of endogenous repeat
gene loci, the alleles or homoeologous loci examined in the
hybrids and allopolyploids do not have obvious internal
repeats. If epigenetic mechanisms are responsible for alle-
lic- and locus-specific gene expression in hybrids and allo-
polyploids, they probably operate through cis- and trans-
acting effects [119,120], chromatin modifications, and/or
small RNAs that discriminate between homoeologous loci
[108,121].

Roles for small RNAs in hybrid vigor and incompatibility
in allotetraploids
The above models suggest that epigenetic and transcrip-
tional regulation of key regulatory genes leads to heterosis.
Nonadditive gene expression is also controlled by post-
transcriptional mechanisms via RNA-mediated pathways
[108,122]. Small RNAs, including microRNAs (miRNAs)
[123], small interfering RNAs (siRNAs) [124], and trans-
acting siRNAs (tasiRNAs) [125,126], mediate post-tran-
scriptional regulation, RNA-directed DNA methylation,
and chromatin remodeling. miRNAs are produced from
genetic loci independent of their targets and serve as
negative regulators of gene expression by targeting RNA
degradation or translational repression [123]. tasiRNAs
arise in plants from specific TAS loci that are transcribed
into precursors, which are cleaved bymiRNA-guidedmech-
anisms. The resulting 21-nt tasiRNAs direct the degra-
dation of target mRNAs [125,126]. miRNAs and tasiRNAs
control the expression of genes that encode transcription
factors and proteins that are important for growth and
development. It is conceivable that different ecotypes and
species might have developed specific growth and devel-
opmental patterns, which are partly mediated by miRNAs
and tasiRNAs. Combination of miRNAs and their targets
of different parental origins in the hybrids or new allopo-
lyploid species may reprogram expression of miRNAs and
tasiRNAs and their targets [127]. Indeed, many miRNA
targets are nonadditively expressed in the allotetraploids
[82], suggesting a role for miRNAs in buffering genetic
clashes between species [127]. In a recent study using
massive parallel sequencing of small RNAs andmicroarray
analysis of miRNAs in resynthesized and natural Arabi-
dopsis allotetraploids and their progenitors, the miRNAs
and tasiRNAs but not the siRNAs were associated with
nonadditive expression of target genes in the allotetra-
ploids [122]. Although the sequences of many miRNAs are
conserved, miRNA accumulation levels are nonadditive in
the leaves or flowers of interspecific hybrids and allotetra-
ploids relative to the parents. Nonadditive accumulation
levels of miRNAs are associated positively with the expres-
sion levels of miRNA biogenesis genes such as AGO1 and
DCL1 but negatively with many miRNA targets. The data
suggest that expression variation of miRNAs and their
targets in the hybrids and allotetraploids are controlled by
epigenetic mechanisms at transcriptional and post-tran-
scriptional levels. The genome merger in the allotetra-
ploids induces epigenetic modifications [108], leading to
nonadditive expression of some miRNA targets, miRNA
primary transcripts, and miRNA biogenesis genes. At the
post-transcriptional level, nonadditive expression of
miRNA biogenesis genes can affect the processing effi-
ciency of miRNA precursors, resulting in nonadditive
accumulation of miRNAs. Moreover, differential expres-
sion of A. thaliana and A. arenosa miRNAs and their
targets in the allotetraploids leads to biased target degra-
dation, probably because the efficiency of target mRNA
degradation is dependent on a threshold of miRNA con-
centration [128]. In addition, although the target loci of
different parental origins are conserved, their secondary
structures might have diverged, which affects the effi-
ciency of miRNA-triggered degradation [129].

Repeat-associated siRNAs (rasiRNAs) are predomi-
nately derived from transposons and repeats and highly
enriched in centromeres and heterochomatic regions [130],
and diverge rapidly among closely related species. The
rasiRNA population is relatively low in F1, and many
rasiRNAs absent in F1 are restored in late and natural
allotetraploids, indicating that it takes several generations
to establish stable expression patterns of siRNAs of
protein-coding genes [48]. Although the proportion of
rasiRNAs is lower in F1 than in A. thaliana, the number
of miRNA reads is higher in F1 than in A. thaliana,
indicating rapid and dynamic changes of siRNAs and
miRNAs in early stages of allopolyploid formation. A few
transposons generated new siRNAs in F1, F7 allotetra-
ploids, and A. suecica. This might be related to sequencing
depth or activation of these elements in allopolyploids.
Reduction of siRNAs in F1 may activate some transposable
elements in response to ‘genomic shock’ [131] in marsupial
interspecific hybrids [46] and induce genome instability
and infertility in Arabidopsis allotetraploids [48,132].
siRNA-directed DNA methylation and chromatin modifi-
cations are required for the establishment and mainten-
ance of heterochromatin and centromeres [124,130],
leading to genome stability. Consistent with the notion,
siRNA accumulation is related to DNA hypermethylation
of A. thaliana homoeologous centromeres in natural allo-
tetraploid A. suecica [121]. During F1 and early stages of
allotetraploid formation, genomic shock causes meiotic
disorders and genome instability [131], probably resulting
from a temporary loss of siRNAs. Over time, genome
stability is restored through regeneration of rasiRNAs in
genetically stable allotetraploids.

Some rasiRNAs are associated with gene repression in
diploids but weakly with gene expression changes between
the related species or in allotetraploids. The correlation
between siRNA-generating genes and the genes that are
nonadditively expressed in the allotetraploids is insignif-
icant, which is consistent with a few genes that are affected
by DNA hypomethylation in A. suecica [121]. This is
because siRNAs are tightly regulated for the maintenance
of heterochromatin and genome stability. It is also likely
that the majority of nonadditively expressed genes encode
proteins, and siRNA-containing transposons and repeats
are underrepresented in microarrays [82].
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A probable model is that siRNAs are inherited mater-
nally to silence transposons that are reactivated during
gametogenesis. The repression of A. thaliana homoeolo-
gous loci [82] and accumulation of A. thaliana centromeric
siRNAs [121] are similar to the repression of transposons
through maternal transmission of endogenous siRNAs in
Drosophila [133]. Indeed, interspecific hybrids and allote-
traploids can only be produced using A. thaliana as the
maternal parent [48,132], suggesting an important role of
maternal inheritance in overcoming hybrid incompatibil-
ity. A recent study has shown that the expression of PolIV-
dependent siRNAs (p4siRNAs) is initiated in the female
gametophyte and persists during seed development [134],
suggesting a role for maternally inherited siRNAs inmain-
taining genomic stability of the new hybrids and offspring.
Unlike conventional imprinting genes, the inheritance of
maternal p4siRNAs is independent of DNAmethylation. It
is proposed that activating factors related to the maternal
expression of RNAi genes such as NRPD1A, RDR2, and
DCL3 are responsible for maternal p4siRNA production.
Alternatively, repressive factors in the paternal genome
can also be involved. The loss of p4siRNAs in the sperm
cells is consistent with expression loss of chromatin remo-
deling factor DDM1, suggesting transcriptional repression
of paternal p4siRNAs during male gamete formation,
which persists after fertilization [135].

The rasiRNAs may be directly related to suppression of
transposons and indirectly related to genomic stability and
growth vigor in the hybrids. The maternal inheritance of
p4siRNAs and paternal suppression of rasiRNAs occur
only in the hybrids, which may lead to morphological
and developmental changes in the hybrids but not in the
parents. As a result, both increase in growth vigor and
post-zygotic failures are frequently observed in hybrid
plants, depending on the presence or absence of rasiRNAs
that are required to maintain genome stability and ferti-
lity.

Future perspectives
Heterosis or hybrid vigor results from genome-wide
changes and interactions between paternal and maternal
alleles. Heterozygosity is a prerequisite to changes in gene
expression and phenotypic variation in hybrids and allo-
polyploids. The heterotic effects on gene expression
changes in the hybrids can be augmented in polyploids
(e.g. diploid versus tetraploid hybrids). Expression altera-
tion of the genes that encode transcription factors and
chromatin proteins is expected to cause cascade effects
on the expression of downstream genes and their biological
processes. In that sense, heterosis can be explained by a
single gene or a few genes in the biological pathways.
Epigenetic regulation of circadian-mediated changes in
chlorophyll biosynthesis and starch metabolism offers
one of the direct links to growth vigor in plant hybrids
and allopolyploids. Maternal inheritance and paternal
suppression of rasiRNAs affect post-zygotic failures and
seed fertility and development, whereas reprogramming of
miRNAs and tasiRNAs in the hybrids leads to nonadditive
phenotypes and growth vigor. Several questions remain to
be answered. First, what causes the allelic expression
variation in the hybrids and allopolyploids? For example,
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how and why does the genomic mixture turn down the
expression amplitude of circadian clock genes without
affecting the duration of internal clocks? Why are the
rasiRNAsmaternally inherited?How are allelic expression
variation and genetic divergence established and main-
tained? Is heterosis caused by genome-wide chromatin
modifications or modifications of a few regulatory genes?
Second, how can heterosis be permanently fixed? Apomixis
(seed production without paternal genetic material) has
been extensively pursued as a means for fixation of hybrid
vigor. Doubling chromosomes in hybrids, particularly in
the intraspecific or interspecific hybrids, offers an alterna-
tive solution to the permanent fixation of hybrid vigor.
Finally, many hybrids, particularly intraspecific and inter-
specific hybrids, cannot survive, probably because of spe-
ciation or lethality genes that existed before speciation or
diverged after speciation, which cause hybrid incompat-
ibilities. Piwi-piRNA and transposons are associated with
germline defects in Drosophila, a phenomenon known as
hybrid dysgenesis. Hybrid vigor and hybrid incompatibil-
ity are two-edges of a magic sword that is hidden in the
parents but revealed in the hybrids and allopolyploids. A
better understanding of the genes and regulatory mech-
anisms for polyploidy and hybrid vigor will help us effec-
tively select the best combinations of parents for producing
best-performing hybrids and polyploids, as well as geneti-
cally manipulate the expression of key regulatory genes in
the hybrid and polyploid plants for the increased pro-
duction of seeds, fruits, biomass, and metabolites, such
as carbohydrates, celluloses, sugars, lipids, and oils, for the
growing demand for these materials to produce food, feed,
and biofuels.
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Review
Mendel’s paper ‘Versuche über Pflanzen-Hybriden’ is the
best known in a series of studies published in the late 18th
and 19th centuries that built our understanding of the
mechanism of inheritance. Mendel investigated the seg-
regation of seven gene characters of pea (Pisum sativum),
of which four have been identified. Here, we review what
is known about the molecular nature of these genes,
which encode enzymes (R and Le), a biochemical regula-
tor (I) and a transcription factor (A). The mutations are: a
transposon insertion (r), an amino acid insertion (i), a
splice variant (a) and a missense mutation (le-1). The
nature of the three remaining uncharacterized characters
(green versus yellow pods, inflated versus constricted
pods, and axial versus terminal flowers) is discussed.

Mendel’s studies: species, traits and genes
Mendel’s paper ‘Versuche ü ber Pflanzen-Hybriden’ [1] is
the best known in a series of studies published in the late
18th and 19th centuries [2–4] that built our understanding
of the mechanism of inheritance [5]. The title of Mendel’s
paper is usually mistranslated in English as ‘Experiments
in Plant Hybridisation’ rather than ‘Experiments on Plant
Hybrids’, reflecting the impact of his work on the science of
genetics rather than Mendel’s own concern with the nature
of hybrids and their implications for the ‘Umwandlung
einer Art in eine andere’ - transformation of one species
into another. There is also a misconception, as a result of
R.A. Fisher’s attack on Mendelism [6], that Mendel’s
results and experimentation were in some way suspect.
These defamatory criticisms include imputations on the
scope of his experimental work, his understanding of what
he wrote and statistical interpretations of his results;
although they have been roundly debunked [7,8], they
remain embedded in common opinion.

In his paper, Mendel described eight single gene char-
acters of pea, of which he investigated the segregation of
seven. The eighth is the ‘purple podded’ character deter-
mined by the gene Pur on linkage group I. He also dis-
cussed the segregation of three traits (tall versus short,
green versus yellow pods and inflated versus constricted
pods) in common bean (Phaseolus vulgaris) that are likely
orthologues of the corresponding characters he studied in
pea. For both species Mendel used additional species
names (such as Phaseolus nanus or Pisum saccharatum).
Corresponding author: Hellens, R.P. (roger.hellens@plantandfood.co.nz).
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These names are no longer used and we would consider
these types as variants – Mendel commented that there is
no ‘sharp line between the hybrids of species and varieties
as between species and varieties themselves’.

From a biological perspective Mendel’s genes appear to
be an unrelated set of genes that are uninformative about a
single process; but they did elucidate the process of genetic
inheritance itself. They are therefore important from an
historical perspective and they illustrate a diversity of
gene functions and types of mutation. Uncovering the
molecular basis of these mutations solves a longstanding
mystery in genetics.

This review focuses on the identification of four of Men-
del’s genes (R/r, round versus wrinkled seed; I/i, yellow
versus green cotyledons; A/a, coloured versus unpigmented
seed coats and flowers; and Le/le, long versus short internode
length). In addition, the possible natures of three other
characters studied by Mendel (Gp/gp, green versus yellow
pods; P/p or V/v, inflated versus constricted pods; and Fa/fa
or Fas/fas, axial versus terminal flowers) are discussed.

Linkage
A major conclusion from Mendel’s work was that the factors
determining individual traits segregated independently of
one another. We now know that this is not always the case.
The associated segregation of parental allelic combinations,
known as genetic linkage, is well established. Fortunately
Mendel studied segregation at multiple unlinked loci. This
meant his results were not confounded by linkage, which
would have been much more difficult to interpret. The issue
of linkage is sometimes egregiously combined with the
criticism of the quality of Mendel’s data to imply falsely
that he somehow suppressed inconvenient data [7]. Unfor-
tunately these discussions suffered from confusion in the
literature regarding chromosome numbers, linkage data
and their combination [9]. Our current view of the position
of the genetic loci Mendel studied is presented in Figure 1.
As discussed below, there is some uncertainty about the
identity of the genes for the fasciated (terminal) flowers (Fa
or Fas) or the constricted pod phenotypes (P or V); therefore,
the map locations of all are indicated. From this distribution
of genetic loci it is clear that there are two possible cases
where linkage could have confounded Mendel’s results:
these are R–Gp and Le–V.

The wrinkled seed character that Mendel studied was R
versus r on linkage group V [10]. The character ‘green versus
oi:10.1016/j.tplants.2011.06.006 Trends in Plant Science, November 2011, Vol. 16, No. 11
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Figure 1. Genetic location of Mendel’s seven characters on pea linkage groups. Yellow versus green cotyledons II/ii on linkage group (I); seed coat (and flower) colour AA/aa

on linkage group (II); tall versus dwarf plants (LeLe/lele) on linkage group (III); difference in the form of the ripe pods (PP/pp or VV/vv) on linkage groups (III) and (VI),

respectively; difference in the position of the flower (FasFas/fasfas or FaFa/fafa) on linkage groups (III) or (IV), respectively; round versus wrinkled (RR/rr) on linkage group

(V); and colour of unripe pod (GpGp/gpgp) on linkage group (V).
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yellow pod’ is unambiguously Gp versus gp, also on linkage
group V. Linkage between these two loci can be detected
[11]. In Mendel’s study of two- and three-factor crosses he
used approximately 600 F2 individuals. He did not present
data on the combination of RR GpGp crossed with rr gpgp,
but some F2 plants derived from this cross were probably
grown as implied by the text, ‘further experiments were
made with a smaller number of experimental plants in
which the remaining characters by twos and threes were
united as hybrids’ [1]. In one recombinant inbred population
derived from the cross between the inbred John Innes
Germplasm lines JI15 and JI399 [12], the recombination
fraction between the R locus (genotyped using a molecular
marker assay) and Gp is 36%, resulting in an expected
segregation ratio of 9.6:2.4:2.4:1.6 rather than 9:3:3:1. Men-
del would have needed about 200 plants in the ‘smaller
number’ to have a 5% statistically significant deviation from
independent assortment. Furthermore, linkage group V in
pea, most likely corresponding to chromosome 3, behaves
unusually in this cross because the number of chiasmata is
never greater than one [12]; usually two or three occur. The
recombination fraction calculated above is therefore the
smallest that Mendel could have encountered, so it is un-
likely that genetic linkage would have been discernable in
any of the crosses that Mendel examined.

Genes and their mutant alleles
Round versus wrinkled (R versus r)

The wrinkled phenotype is striking because plants that
appear completely normal bear seeds that are irregular in
shape (Figure 1). The immature seeds do not appear
unusual, but by maturity there are many differences be-
tween the wild-type and mutant seeds. These include
diverse features such as subcellular arrangement of orga-
nelles, the ratio of the two major types of storage protein,
the shape of starch granules, the amylose to amylopectin
ratio of the starch polymers and sugar content [13]. There
are several genes in pea that confer a wrinkled (rugosus)
phenotype and all are lesions in enzymes involved in starch
biosynthesis [14–17]. However, only the r mutant is known
to have been available to Mendel [10].

A biochemical approach was taken to identify the gene
encoded by R [10]. It was known that rr lines were distin-
guished from wild-type by their reaction to an antibody
raised against the starch branching enzyme, so this anti-
body was used to identify cDNA clones. These cDNAs
provided the route to isolating the structural gene encod-
ing a starch branching enzyme (EC 2.4.1.18). Subsequent
analysis showed that this gene co-segregated with the R
locus and that wrinkled (r) mutants were disrupted in this
gene by the insertion of a non-autonomous type II trans-
poson (called Ips-r) related to the Ac/Ds family [10]
(Figure 2). Thus the first of Mendel’s mutants to be char-
acterized corresponded to a mutation in a gene encoding a
biosynthetic enzyme and it was potentially associated with
an active transposon. No systematic search for other alleles
at the R locus has been undertaken and the active and
autonomous form of the transposon has not been identified.

Yellow versus green cotyledons (I versus i)

Ripe wild-type II seeds are yellow because the chlorophyll
is lost as the seeds mature, whereas ii seeds remain green
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Figure 2. Mutations in Mendel’s genes. Round versus wrinkled (R vs r): encoding starch branching enzyme I (SBEI). In the mutant allele, a transposon is inserted into the

open reading frame (large triangle), disrupting both transcription (larger transcript) and translation in mutant lines. Yellow versus green cotyledons (I vs i): encoding a stay-

green protein (SGR). In the mutant allele, a six nucleotide insertion in the coding sequence leads to a two amino acid insertion in the translated protein, disrupting gene

function. Other amino acid changes in the signal peptide are not thought to disrupt function. Seed coat (and flower) colour (A vs a): encoding a basic helix–loop–helix

transcription factor (bHLH). In the most common mutant allele, a single nucleotide change at an intron junction disrupts RNA processing leading to a transcript with an

additional eight nucleotides and a truncated protein. Tall versus dwarf plants (Le vs le): encoding gibberellic acid 3-oxidase. A single nucleotide substitution in the coding

sequence leads to an alanine (A) to threonine (T) substitution at position 229 that reduces the activity of the enzyme.
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(Figure 1). This difference can be seen through the seed
coat, but is clearest if the testa is removed. The phenotype
is somewhat variable: wild-type seeds that dry out early
sometimes retain green colour, whereas green ii seeds can
sometimes bleach. Chlorophyll is a central component of
the plant photosynthetic machinery and the compound
responsible for the green colour in plants. A dynamic
pathway of chlorophyll biosynthesis and degradation
[18] maintains the amount of chlorophyll in photosynthetic
tissues and reduces it in low light, during senescence, or
other specific phases of plant development.

As green cotyledons are the recessive phenotype, a mu-
tation in the chlorophyll degradation pathway best explains
the molecular nature of this trait. Studies in species such as
rye grass (Festuca pratensis) [19], rice (Oryza sativa) [20],
maize (Zea mays) [21], pepper (Capsicum annuum) [22] and
Arabidopsis (Arabidopsis thaliana) [23,24], have identified
several genes with ‘stay-green’ phenotypes, such as: PAO,
which encodes pheophorbide a oxygenase that converts
pheophorbide a to red chlorophyll catabolite [21–24];
CBR, which encodes chlorophyll b reductase that converts
chlorophyll b to chlorophyll a [20]; Stay-Green (SGR), which
encodes a protein that is thought to aid the disassembly of
light harvesting complex II, allowing chlorophyll to enter
the degradation pathway [22,25]; and PPH, which encodes
pheophytin pheophorbide hydrolase that converts pheophy-
tin a to pheophorbide a [26].

The first indications that a mutation in a SGR gene
might be responsible for the i mutation were the observa-
tions of genetic linkage between a pea orthologue of SGR
from rice and the I locus together with a reduction in the
accumulation of SGR transcripts in ii pea lines [27]. The
molecular nature of this lesion was later described [28],
and several sequence differences were observed. Two
592
nucleotide differences in the region predicted to function
as a signal peptide were initially considered as explana-
tions for the stay-green phenotype because they lead to
amino acid substitutions. However, when bombarded into
onion (Allium cepa) epithelial cells, both the I and i
sequences fused with green fluorescent protein (GFP) were
able to target fluorescence into the plastid compartment,
indicating that the function of the signal peptide was not
compromised by these substitutions. A third sequence
difference in ii lines consisted of a six-nucleotide (two
amino acid) insertion (Figure 2). To assess the consequence
of this insertion, a modified form of the rice SGR2 gene
containing the same insertion was transformed into the
sgr-2 mutant. This construct was unable to complement
the sgr-2 mutant rice line, whereas the rice SGR2 gene was
able to complement the mutant. Neither SGR allele from
pea was able to complement the rice sgr-2 mutation [28].

SGR appears to direct chlorophyll to the degradation
pathway [25]. Although the mechanism by which the pro-
tein achieves this is unclear, it seems that a small modifi-
cation of the protein sequence, as seen in the green
cotyledon pea lines, might be sufficient to disrupt the
function of the protein.

Seed coat (and flower) colour (A versus a)

The a mutation abolishes anthocyanin pigmentation
throughout the plant. In pea, as in many other plants,
the appearance of red, purple or blue pigments is due to the
accumulation of anthocyanin compounds. The different
shades of red, purple and blue pigmentation are due to the
chemical makeup of the individual anthocyanin com-
pounds, in particular the presence of hydroxyl groups
and sugar moieties, together with the pH of the vacuole
where they accumulate and other compounds that
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complex with the anthocyanins [29–31]. Anthocyanin pig-
mentation is patterned in space and in response to envi-
ronmental stimuli such as high light or cold temperatures.
Mutants that affect the pattern of pigmentation (such as
Pur q.v.) are well represented in Pisum germplasm but in a
mutants there is no accumulation of anthocyanin in any
part of the plant.

A gene that encodes a basic helix–loop–helix (bHLH)
transcription factor was identified as a candidate gene for
the A locus through comparative genomics [32]. The genet-
ic map of pea was aligned to genomic sequences of Med-
icago (Medicago truncatula) using the sequences of cDNA
probes known to flank the A locus. Annotated genes within
about a 10 Mb region of the medicago genome were then
scrutinized to identify candidate genes with predicted
functions known to influence anthocyanin accumulation.
No putative biosynthetic genes were identified in this
region. Only one potential regulatory gene, a bHLH gene
similar to Arabidopsis TT8 was identified. Degenerate
primers designed to the medicago gene were used to isolate
the pea orthologue, which was then mapped to linkage
group II and shown to co-segregate with the A locus
(Figure 1). Gene models for this bHLH gene were derived
from BAC DNA sequences from both coloured and white-
flowered lines [32].

Of the 16 single nucleotide polymorphisms (SNPs) iden-
tified between the two gene models, the majority (13/16)
were silent mutations. Two SNPs predicting amino acid
changes were subsequently found in both coloured and
white-flowered lines, excluding them as candidates for
the causal mutation. The remaining SNP, a G-to-A transi-
tion at the splice donor site of intron six of the gene model,
occurred only in white-flowered lines. This change inter-
feres with RNA splicing such that eight nucleotides of
intron sequence are retained in the processed mRNA,
corresponding to a truncated peptide on translation. To
confirm that this SNP determined the mutant phenotype,
the white-petal phenotype was complemented by transient
transformation using biolistics. BAC DNA from both
coloured and white-flowered lines was shot into pea petals
and coloured foci were observed after introduction of the
wild-type but not the mutated gene. Finally, the A gene
was sequenced from a range of pea germplasm. In this
selection, all 60 pea lines with coloured flowers had an
intact intron junction (Figure 2), and most but not all (78/
88) white-flowered lines had the mutated intron junction.
Of the ten remaining white-flowered lines, seven exotic
lines carried a different mutation, a single nucleotide
insertion in exon six that is predicted to introduce a
frameshift and lead to truncation of the protein on trans-
lation. No significant deviation from the wild-type se-
quence has been found in the three other white-flowered
lines; however, it is not certain that these three lines are a
mutants, and the entirety of the gene has not been se-
quenced [32].

Tall versus short (Le versus le)

Many pea genes are now known to be involved in the
synthesis of (Lh, Ls, Na, Sln and Le) [33–38], or in the
response to (LaI and Cry), the plant hormone gibberellin
(GA) [39]. On the basis of its phenotype and distribution
among varieties the Le gene is considered to be the one
studied by Mendel [33,40–42]. LeLe plants are tall,
lele plants are dwarf (Figure 1); this difference is due to
internode length rather than the number of nodes.

The Le gene product was implicated in GA biosynthesis
in early experiments that showed that stem elongation in
dwarf seedlings was stimulated by application of GA3

[43,44]. The activity of the Le gene product was established
because the conversion of GA20 to GA1 (one of the active
forms of GA) was much greater for LeLe than for lele plants
[36], and GA1 levels were higher in the shoots of LeLe
versus lele plants, whereas GA20 amounts were elevated in
lele plants [45,46]. As a consequence of these studies, it was
hypothesized that Le encodes a GA 3-oxidase (GA 3b-
hydroxylase). GA 3-oxidase activity was shown to be re-
duced in lele plants [45] and subsequent identification of
the Le gene demonstrated that it encodes a GA 3-oxidase
(EC 1.14.11.15) [40,41].

A partial Le sequence was obtained by screening a cDNA
library at low stringency with Arabidopsis GA 3-oxidase
(AtGA4) probe. This enabled the isolation of full length le
and Le genomic sequences [40]. Sequence alignment
revealed a G-to-A transition conferring an alanine-to-thre-
onine substitution at position 229 in the le-1 gene product
(Figure 2). Although this residue is not invariant among
plant 2-oxoglutarate-dependent dioxygenases, the class of
enzymes to which GA 3-oxidase belongs, it nevertheless
lies within a highly conserved region of the protein. Link-
age analysis demonstrated co-segregation of the pea GA3ox
sequence and Le. GA 3-oxidase enzymatic activity was
demonstrated following recombinant expression of the
cDNAs from Le and le-1 plants in Escherichia coli. The
GA20 substrate was converted to GA1 by both cDNA ex-
pression products but the enzyme encoded by le-1 showed
approximately 5% of the activity of the wild-type. The
identity of Le as GA3ox was further supported by the
characterization of two additional induced alleles; le-2
(formerly known as led) and le-3 [41]. The le-2 mutant
was found to carry both the alanine-to-threonine substitu-
tion at position 229 found in le-1, and a second mutation; a
single base deletion of G376, which was inferred to confer a
frameshift and premature termination of translation. This
mutation at a second site confirms that the le-2 allele is
derived from Mendel’s le-1 allele [47]. The le-3 line contains
a C-to-T transition resulting in a histidine-276 to tyrosine
amino acid substitution. The gene products from Le, le-1,
le-2 and le-3 GA 3-oxidase clones were assayed following
expression in E. coli. The relative activities of the recom-
binant enzymes for two substrates, GA4 (converted to GA9)
and GA20 (converted to GA1), were Le > le-1 � le-3 > le-2
[41,47].

The le-2 allele is likely to be a null allele because the
recombinant protein exhibits no activity when GA20 is
used as a substrate and GA1 product is measured [47].
Until recently, this was difficult to equate with the le-2
plant phenotype, which is not an extreme dwarf, and is
capable of limited GA20 to GA1 conversion [45]. A second
pea GA 3-oxidase gene (GA3ox2) that is expressed pri-
marily in roots but also in shoots might be responsible
for the low level of GA 3-oxidase activity in le-2 plants
[39].
593
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Uncharacterized genes
Inflated versus constricted pods (P versus p or V

versus v)

The inflated versus constricted pod phenotype refers to the
presence or absence of a layer of lignified cells (sclerenchy-
ma) adjoining the epidermis of the pod wall and is referred
to as parchment (Figure 1). Pods without ‘that rough
skinny membrane’ are described in Gerard’s 1597 Herball
[48], and in general this cell layer is absent in vegetable pea
types where the whole pod is eaten (mangetout). Absence of
this cell layer leads to a pod that is constricted around the
seeds at maturity. There are two sub-types of this class of
cultivar, one with a thickened pod wall (nn) and no ‘string’
along the ventral suture (sin2sin2) called ‘snap’ or ‘sugar
snap’ peas. The second type, sometimes called ‘snow pea’
has thin pod walls (NN) and usually has a stringy pod
(Sin2Sin2). Although breeders commonly combine NN
with a wrinkled seed character (rr) it is difficult to recover
vigorous stringless plants with wrinkled seeds [49]. Men-
del referred to peas with this pod characteristic as ‘P.
saccharatum’ suggesting that he used a ‘sugar snap’ type
(probably rr Sin2Sin2 NN with either vv or pp).

It is difficult to be sure which locus Mendel was studying
because homozygous individuals carrying mutations in
either of the two genes P or V lack this cell layer [42].
However, we can make some deductions. Mendel studied
the segregation of multiple factors in single crosses and
although he did not report studies of the joint segregation
of ‘stem length’ and ‘pod form’ he did report that small-
scale experiments combining characters ‘by twos and
threes’ were undertaken. The V and Le loci are linked,
about 15 cM apart on linkage group III [50], so the combi-
nation of these two characters in a single cross would have
deviated from his expectation for independent segregation.
There are therefore two likely possibilities: (i) Mendel
studied vv in small populations where the deviation from
expectation due to linkage was not seen, or (ii) the charac-
ter state he studied was determined by pp; the P locus is
located on linkage group VI [51] and so would have segre-
gated independently of Le.

The ‘parchments’ of PP and VV genotypes are secondary
cell walls deposited after the cessation of cell growth and
are composites of cellulose, hemicelluloses and lignins [52].
Secondary wall biosynthesis has been characterized bio-
chemically and genetically, and studies on transcription
factors in Arabidopsis indicate that a group of NAC domain
proteins and their downstream targets act as regulators
[53]. Three homologues of these transcription factor genes
are located on chromosome 2 of medicago in regions syn-
tenic with P and V and are under investigation as candi-
dates for P or V in pea.

Green versus yellow pods (Gp versus gp)

The gp mutation conveys another striking phenotype.
GpGp plants have green pods whereas gpgp plants have
yellow pods (Figure 1). Young stems and buds at flowering
are also noticeably yellow, whereas leaflets are green as
normal. As with the cotyledon colour locus I, the green pod/
yellow pod Gp locus appears as a difference in the accumu-
lation of chlorophyll. In contrast to the I locus where
the wild-type dominant form is yellow and the recessive
594
mutant form is green, for the Gp locus the wild-type
dominant form is green and the recessive mutant form
is yellow. This suggests that the mutant form i represents a
failure of chlorophyll degradation, whereas the mutant
form gp fails to develop a normal chlorophyll complex in
the pods [54,55]. Interestingly the region of the medicago
genome syntenic to Gp contains a gene Medtr7g080590
annotated as ‘chloroplast lumenal protein related’ which
has similarity to the Arabidopsis LCD1 gene, mutants of
which have a pale phenotype under standard growth con-
ditions and bleach in response to ozone [56]. This pheno-
type has some similarities to gp suggesting that it is a
candidate worth investigating further.

Axial versus terminal flowers (Fa versus fa or Fas

versus fas)

The position of flowers, and hence the seeds, on a crop plant
is of great importance in agriculture. Several genes deter-
mine flower location in pea. Homozygous mutants carrying
the det gene are determinate with a terminal inflorescence.
This mutation has been characterized at the molecular
level [57]; however, it is most unlikely that this was the
gene studied by Mendel because he described the mutant
form as having ‘a false umbel’, implying a fasciated type
with a broadened stem and a ‘crown’ of many flowers.
Alleles of fasciation genes have been widely used in pea
breeding, particularly in conjunction with a mutation that
confers synchronicity in flowering time [58].

In pea, mutations at several different loci are known to
confer a fasciated phenotype; of these, the genes Fa (link-
age group IV) and Fas (linkage group III) are two that are
not also defective in nodulation [59]. Mendel would most
likely have noticed the yellowness of plants defective in
nodulation, thus Fa and Fas are contenders for the ‘differ-
ence in the position of the flowers’ character. The Fa locus
has been conventionally assigned to Mendel’s trait, but the
evidence for this is not definitive. The distance between
Fas and Le on linkage group III is sufficiently large that
linkage would have been difficult to detect without inter-
vening markers.

In general, stem fasciation is thought to result from
failure of cellular organization within the shoot apical
meristem. In Arabidopsis, several classes of genes are
known to contribute to this organization and to show
loss-of-function phenotypes that include shoot fasciation.
These include small secreted peptides encoded by CLA-
VATA3 (CLV3)/ENDOSPERM SURROUNDING RE-
GION (ESR)-related genes, which are known to act as
ligands for transmembrane proteins such as CLV1 in
the shoot apical meristem [60]. These interactions trans-
mit a signal that keeps the stem cell population in check. A
failure in the CLV signalling pathway leads to increased
stem cell accumulation, as seen in the fasciated phenotypes
of clv1 and clv3 mutants [61–63]. CLV-related genes are
therefore obvious candidates for Fa and Fas in pea, as well
as genes that affect the cell cycle. Although many cell cycle
mutants are embryo-lethal, several have been character-
ized in Arabidopsis that are viable and have a fasciated
shoot phenotype. Among these are the atbrca2 mutants,
which carry lesions in a homologue of the breast tumour
susceptibility factor BRCA2 [64], and the fasciata1 ( fas1)
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and fas2 mutants [65], which are affected in the genes
encoding the p150 and p60 subunits of chromatin assembly
factor 1, respectively. A BLAST search of the region of the
medicago genome syntenic with Fa shows that it contains a
homologue of CLV1 whereas the region syntenic with Fas
contains a CLV1 homologue and a BRCA2 homologue.

Conclusion
As 150 years have elapsed since Mendel’s experiments
[6,32], it is difficult to state with certainty that the alleles
he studied have been identified. In this respect, the diver-
sity of mutant alleles can be informative: lines studied by
Mendel must have carried spontaneous mutations. We
should also bear in mind that multiple independent spon-
taneous mutations are unlikely because spontaneous mu-
tation rates are very low with respect to the time since
domestication. We do not know the number of different
spontaneous alleles for r in pea germplasm, but for Le the
le-2 allele appears to be derived from le-1 (and le-3 is an
induced mutation) so there has been a single introduction
of this dwarf trait into cultivars. The diversity of mutant a
alleles has been studied and one is predominant in culti-
vated lines. A second rare allele restricted to a small subset
of landraces is known. This again suggests a single intro-
duction of this character into modern cultivars, or cultivars
available in Mendel’s time. In contrast, several spontane-
ous i alleles exist, suggesting independent introductions of
this trait, which seems remarkable. The types of lesion in
Mendel’s mutants are various: transposon insertion (r),
missense mutation (le-1), splice variant (a) and amino acid
insertion (i). The mutations affect diverse biological pro-
cesses; two genes encode enzymes (R, Le), one is a regulator
of a biochemical pathway (I) and the most recently de-
scribed (A) is a transcription factor of a family first known
for its role in cancer biology. So far, a range of different
approaches has been used to identify four of Mendel’s seven
loci; new comparative genomic tools have identified candi-
dates for the three remaining loci.

Acknowledgements
We thank Rebecca McGee, Andrew Allan and William Laing for helpful
comments on this manuscript.

References
1 Mendel, G. (1866) Versuche ü ber pflanzen-hybriden. Verhandlungen der

naturfoschung Vereins 4, 3–47
2 Knight, T. (1799) An Account of Some Experiments on the Fecundation

of Vegetables. In a Letter from Thomas Andrew Knight, Esq. to the
Right Hon. Sir Joseph Banks, K.B. P. R. S. Philos. Transact. R. Soc.
Lond. (1776–1886) 89, 195–204

3 Goss, J. (1824) On variation in the colour of peas, occasioned by cross
impregnation. Hort. Trans. 5, 234–237

4 Sageret, A. (1826) Considérations sur la Production des Hybrides, des
Variantes et des Variétés en General et sur celles de la Famille des
Cucurbitacées en Particulier. Annales des Sciences Naturelles, 1st ser. 8,
294–314

5 Olby, R. (1966) Origins of Mendelism, University of Chicago Press
6 Fisher, R.A. (1936) Has Mendel’s work been rediscovered? Ann. Sci. 1,

115–137
7 Fairbanks, D.J. and Rytting, B. (2001) Mendelian controversies: a

botanical and historical review. Am. J. Bot. 88, 737–752
8 Hartl, D.L. and Fairbanks, D.J. (2007) Mud sticks: On the alleged

falsification of Mendel’s data. Genetics 175, 975–979
9 Ellis, T.H.N. and Poyser, S.J. (2002) An integrated and comparative

view of pea genetic and cytogenetic maps. New Phytol. 153, 17–25
10 Bhattacharyya, M.K. et al. (1990) The wrinkled-seed character of pea
described by Mendel is caused by a transposon-like insertion in a gene
encoding starch-branching enzyme. Cell 60, 115–122

11 Rozov, S.M. et al. (1993) A new version of pea linkage group 5. Pisum
Genet. 25, 46–51

12 Hall, K.J. et al. (1997) The relationship between genetic and
cytogenetic maps of pea. II. Physical maps of linkage mapping
populations. Genome 40, 755–769

13 Wang, T.L. and Hedley, C.L. (1993) Genetic and developmental
analysis of the seed in peas. In Genetics, Molecular Biology and
Biotechnology (Casey, R. and Davies, D.R., eds), CAB International

14 Martin, C. and Smith, A.M. (1995) Starch Biosynthesis. Plant Cell 7,
971–985

15 Harrison, C.J. et al. (2000) The rug3 locus of pea encodes plastidial
phosphoglucomutase. Plant Physiol. 122, 1187–1192

16 Craig, J. et al. (1999) Mutations at the rug4 locus alter the carbon and
nitrogen metabolism of pea plants through an effect on sucrose
synthase. Plant J. 17, 353–362

17 Bogracheva, T.Y. et al. (1999) The effect of mutant genes at the r, rb,
rug3, rug4, rug5 and lam loci on the granular structure and physico-
chemical properties of pea seed starch. Carbohydr. Polymers 39, 303–

314
18 Eckhardt, U. et al. (2004) Recent advances in chlorophyll biosynthesis

and breakdown in higher plants. Plant Mol. Biol. 56, 1–14
19 Moore, B.J. et al. (2005) Molecular tagging of a senescence gene by

introgression mapping of a stay-green mutation from Festuca
pratensis. New Phytol. 165, 801–806

20 Kusaba, M. et al. (2007) Rice NON-YELLOW COLORING1 is involved
in light-harvesting complex II and grana degradation during leaf
senescence. Plant Cell 19, 1362–1375

21 Gray, J. et al. (1997) A novel suppressor of cell death in plants encoded
by the Lls1 gene of maize. Cell 89, 25–31

22 Borovsky, Y. and Paran, I. (2008) Chlorophyll breakdown during
pepper fruit ripening in the chlorophyll retainer mutation is
impaired at the homolog of the senescence-inducible stay-green
gene. Theor. Appl. Genet. 117, 235–240
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Breeding Technologies to Increase
Crop Production in a Changing World
Mark Tester* and Peter Langridge

To feed the several billion people living on this planet, the production of high-quality food must
increase with reduced inputs, but this accomplishment will be particularly challenging in the face of
global environmental change. Plant breeders need to focus on traits with the greatest potential to
increase yield. Hence, new technologies must be developed to accelerate breeding through improving
genotyping and phenotyping methods and by increasing the available genetic diversity in breeding
germplasm. The most gain will come from delivering these technologies in developing countries, but
the technologies will have to be economically accessible and readily disseminated. Crop improvement
through breeding brings immense value relative to investment and offers an effective approach to
improving food security.

Althoughmore food is needed for the rapidly
growing human population, food quality
also needs to be improved, particularly for

increased nutrient content. In addition, agricul-
tural inputs must be reduced, especially those of
nitrogenous fertilizers, if we are to reduce en-
vironmental degradation caused by emissions
of CO2 and nitrogenous compounds from agri-
cultural processes. Furthermore, there are now
concerns about our ability to increase or even
sustain crop yield and quality in the face of dy-
namic environmental and biotic threats that will
be particularly challenging in the face of rapid
global environmental change. The current di-

version of substantial quantities of food into the
production of biofuels puts further pressure on
world food supplies (1).

Breeding and agronomic improvements have,
on average, achieved a linear increase in food
production globally, at an average rate of 32million
metric tons per year (2) (Fig. 1). However, to meet
the recent Declaration of the World Summit on
Food Security (3) target of 70% more food by
2050, an average annual increase in production of
44 million metric tons per year is required (Fig. 1),
representing a 38% increase over historical
increases in production, to be sustained for 40
years. This scale of sustained increase in global
food production is unprecedented and requires
substantial changes in methods for agronomic
processes and crop improvement. Achieving this
increase in food production in a stable environment
would be challenging, but is undoubtedly much

more so given the additional pressures created
by global environmental changes.

Global Environmental Change Alters
Breeding Targets
Certain aspects of global environmental change
are beneficial to agriculture. Rising CO2 acts as a
fertilizer for C3 crops and is estimated to account
for approximately 0.3% of the observed 1% rise in
global wheat production (4), although this benefit
is likely to diminish, because rising temperatures
will increase photorespiration and nighttime res-
piration. A benefit of rising temperatures is the
alleviation of low-temperature inhibition of growth,
which is a widespread limitation at higher latitudes
and altitudes. Offsetting these benefits, however,
are obvious deleterious changes, such as an in-
creased frequency of damaging high-temperature
events, new pest and disease pressures, and al-
tered patterns of drought. Negative effects of other
pollutants, notably ozone, will also reduce benefits
to plant growth from rising CO2 and temperature.

Particularly challenging for society will be
changes in weather patterns that will require
alterations in farming practices and infrastructure;
for example, water storage and transport networks.
Because one-third of the world’s food is produced
on irrigated land (5, 6), the likely impacts on
global food production are many. Along with
agronomic- andmanagement-based approaches to
improving food production, improvements in a
crop’s ability to maintain yields with lower water
supply and quality will be critical. Put simply, we
need to increase the tolerance of crops to drought
and salinity.

In the context of global environmental change,
the efficiency of nitrogen use has also emerged as
a key target. Human activity has already more
than doubled the amount of atmospheric N2 fixed
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annually, which has led to environmental impacts,
such as increased water pollution, and the emis-
sion of greenhouse gases, such as nitrous oxide.
Nitrogen inputs are increasingly being managed
by legislation that limits fertilizer use in agricul-
ture. Furthermore, rising energy costs means that
fertilizers are now commonly the highest input
cost for farmers. New crop varieties will need to
be more efficient in their use of reduced nitrogen
than current varieties are (7). Therefore, it is im-
portant that breeding programs develop strate-
gies to select for yield and quality with lower
nitrogen inputs.

Current Approaches to Crop Improvement
Arguably, increased yield in conditions of abi-
otic stresses, such as drought and salinity, could
be best achieved by selecting for increased yield
under optimal production conditions: Plants with
higher yields in good conditions are more like-
ly to have higher yields in stressed conditions
(8). Such an approach will also increase yield in
high-yield environments. However, it is becom-
ing increasingly apparent that specific selection
strategies are needed to enhance yield in low-
yield (stressed) environments. Given that aver-
age global yields of wheat are less than 3 metric
tons/ha (Fig. 1) and given there are many areas
with yields as high as 10 metric tons/ha, the ma-
jority of land cropped to wheat delivers yields
below 3 metric tons/ha. Therefore, by virtue of
the much larger areas of low-yielding land glob-
ally, low-yielding environments offer the greatest
opportunity for substantial increases in global food
production. Increasing yield by 1 metric ton/ha in
a low-yielding area delivers a much higher rel-
ative increase than does the same increase in

high-yielding environments. This increase can
be achieved by tackling major limitations on
yield in poor environments (termed yield stabil-
ity); for example, by protecting plants and yield
from factors such as salinity and heat or drought
periods. The local social benefits of supporting
farmers on low-yielding lands would also be
great.

It is often thought that concentration on yield
stability may come at the expense of high yields
in good years; however, yield penalties in more
favorable conditions do not necessarily accom-
pany drought tolerance (Fig. 2).
Yield stability is harder to select
for than improved yield is, be-
cause selection in breeding pro-
grams requires many years and
many sites for evaluation. How-
ever, there is evidence for a ge-
netic basis for yield stability and,
hence, an opportunity for gain
(9). Transgenic approaches are
also likely to improve yield sta-
bility (10). There are several clear
examples where single genes
have been able to substantially
increase yield, notably to drive
domestication (to control tiller
number, branching, and seed
number) and the green revolu-
tion (for dwarfing). Initial results
suggest that a gene conferring
increased drought tolerance may
also have a widespread impact
on yield (10).

This is not to say that efforts
to maintain yield should be re-

duced. In particular, maintaining resistance to
rapidly evolving pests and pathogens is an
essential mainstay of breeding programs. Inter-
actions between breeders, pathologists, and ag-
ronomists must be maintained to ensure that
crops and cropping systems change coordinately.
No-till farming, in which plowing of the soil is
avoided, for example, has changed the spectrum
of diseases and pests attacking crops, to the extent
that a change in breeding targets was needed. The
development of multiple cropping systems will
also demand interactions between agronomists
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Fig. 1. Cereal production targets. (Left) Global cereal production has
risen from 877 million metric tons in 1961 to 2351 million metric tons in
2007 (blue). However, to meet predicted demands (3), production will
need to rise to over 4000 million metric tons by 2050 (red). The rate of
yield increase must move from the blue trend line (32 million metric tons

per year) to the red dotted line (44 million metric tons per year) to meet
this demand, an increase of 37%. The inset table shows the 2007 data
for the three major cereals. Data are from the FAO: http://faostat.fao.org/.
(Right) The greatest demand for yield increases will be from countries in
the developing world. [Based on FAO data (26)].

Fig. 2. Yield under severe drought stress. Shown are differences in
maintenance of yield with lower water supply for three lines of
Australian bread wheat. Low-yielding environments are water-limited
fields in southern Australia. The yield for each of the three lines is
plotted relative to the average yield for that site of at least 50
independent genotypes. The lines were evaluated in 25 environments
(multiple sites for several years).
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Box 1. New breeding technologies.

MAS uses a marker such as a specific phenotype, chromosomal banding,
a particular DNA or RNA motif, or a chemical tag that associates with the
desired trait. For example, a DNA marker closely linked to a disease
resistance locus can be used to predict whether a plant is likely to be
resistant to that disease.
• Gene pyramiding can usually only be accomplished by using MAS. For

example, pyramiding is used to create durable disease resistances by
selecting for two or more resistance genes against a pathogen. Multiple,
partial, rust-resistance genes in wheat can be accumulated into elite
varieties to provide strong and durable resistance. Single genes would give
only weak resistance, and MAS offers the only effective method for
accumulating multiple resistances (22).
• Marker-assisted recurrent selection (MARS) involves crossing in

selected individuals at each cycle of crossing and selection. In this way,
desirable alleles can be brought into the breeding scheme from many
different sources. This technique has been applied to sunflower, soybean,
and maize to bring desirable alleles at several target loci into single elite
lines (27).
• Genome-wide or genomic selection also relies on MAS and is under

evaluation for the feasibility of incorporating desirable alleles at many loci
that have small genetic effect when used individually. In this approach,
breeding values can be predicted for individual lines in a test population
based on phenotyping and whole-genome marker screens. These values
can then be applied to progeny in a breeding population based on marker
data only, without the need for phenotypic evaluation. Modeling studies
indicate that this method can lead to considerable increases in the rates of
genetic gain by accelerating the breeding cycles (20). In the oil palm, for
example, this approach could lead to the release of improved germplasm
after only 6 years as compared with the current time of 19 years (28).
• Complex trait dissection uses high-throughput technologies to

determine the phenotypic components of complex traits. For example,
robotic greenhouse systems use nondestructive imaging to monitor growth
rates, stem and leaf architecture, and root structure (for example, see www.
lemnatec.com/). Similar systems can also be adapted for the detection of
characteristics of chlorophyll fluorescence (which indicate aspects of plant
responses to the environment) or fluorescent protein–labeled genotypes.
• The analysis of complex traits has recently been bolstered by

developments in statistical and modeling methods for the analysis of
phenotypic data obtained from field and controlled environment studies.
For example, in assessing drought tolerance in wheat and sorghum,
modeling can be used generate an “index of the climatic environment” to
identify the stages of crop development where there is the strongest
interaction between genotype and the environment and to identify aspects
of the crop response that can be most readily enhanced by breeding and
selection (29).
• Increasing genetic diversity requires an expansion of the germplasm

base in breeding programs (22), but this is dependent on enhancing
techniques for assessing the value of the program and using individual
accessions from germplasm collections. Improvements in phenotyping and
genotyping will help remove this limitation by facilitating the identifica-
tion and characterization of key adaptive QTLs. For example, increased
expression of a boron transporter in a barley landrace leads to high
tolerance to soil boron in elite varieties when the high-expression allele is
transferred. Screening for variation in expression levels for this gene in
germplasm collections may identify new sources of tolerance (30).

• Introgression of novel alleles from landraces and wild relatives is often
slow and tedious, but options are now being developed for accelerating
introgression as we learn more about the recombinational behavior of
plant genomes and develop new breeding methods.
• The wider deployment of GM approaches will be needed for the

introduction of novel genes and alleles from diverse sources, and particularly
for traits that are absent from plant genomes (for example, Bacillus
thuringiensis toxin from soil bacteria) or where there is insufficient variation
for practical utility (for example, vitamin A accumulation in rice endosperm).
• The constraints on regulatory and consumer acceptance of GM can be

reduced by adopting alternative approaches for engineering plants. For
example, consumer acceptance may be greater and regulatory approvals
simpler for plants transformed with cis-genic vectors in which only host
gene sequences are used in the transformation construct (www.cisgenics.
com/). Similarly, the creation of marker-free plants, where only the DNA
that has a biological effect remains in the plant, has been used to develop
plants without antibiotic-resistance genes, which has caused much
controversy (31).
• Heterosis (hybrid vigor) for inbreeding species (that is, species that

usually self-pollinate, such as rice and wheat) can offer 20% to over 50%
yield increases, and, for example, a 68% increase in yield has been
achieved in foxtail millet (32). Strategies for using heterosis more widely to
increase yields in inbreeding crops center on finding ways of reducing the
cost and increasing the efficiency of producing hybrid seed. These include
identifying new sources of male sterility for hybrid creation [such as
thermosensitive genic male sterility in rice (33)] and using GM approaches
to engineer sterility and restore fertility (such as the InVigor Canola from
Bayer CropScience)]. Another possible mechanism for producing hybrid
seed involves the use of apomixis, where plants produce seed without the
need for fertilization. This allows hybrid vigor to be fixed. Creating
apomictic crop plants may also be possible as we learn more about the
genes controlling this process.
• Direct targeting of key heterotic loci may also be achievable as we learn

more about the molecular basis of hybrid vigor (for example, in maize) (34).

Limitations
Of course, none of this will happen without suitably trained staff in plant

breeding and molecular biology, so substantial increases in the education
of plant breeders are essential. Most countries are struggling to maintain
strong breeding capabilities. A vital adjunct is the free communication of
resources and capabilities from technology developers to technology users.
Resource and capacity building within breeding programs is essential to
develop novel approaches, particularly in developing countries. Further-
more, developing countries critically need support for the development of
crops, where there has been little interest from the developed world and,
consequently, little investment. In many cases, these “orphan crops,” such
as cassava and plantain, are of critical importance for food security.

For many of the new breeding technologies, access to equipment, re-
agents, and skilled personnel is critical. Whereas service providers deliver
this support to breeding programs in some parts of the world, they are often
too expensive for poorly resourced breeding programs, and the logistics of
sending plant tissue samples for analysis in a timely fashion can be prohib-
itive. Some organizations are attempting to address this limitation by es-
tablishing support services for breeding programs in the developing world
(www.generationcp.org/).
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and breeders. However, it is clear that more is
required than can be provided by traditional
breeding approaches.

Emerging Technologies for Crop Breeding
The production and evaluation of genetically
modified (GM) crops is an active area of re-
search, but the access of growers to this tech-
nology in many countries is currently restricted
primarily because of political and bioethical
issues (Box 1). Nevertheless, GM technologies
permit the generation of novel variation beyond
that which is available in naturally occurring
(or even deliberately mutated) populations.
Classic applications of GM include the use of
proteinaceous toxins to control insect pests and
“golden rice,” which is biofortified with vita-
min A (11). Crucial to the future deployment of
GM crops are the discovery and characteriza-
tion not only of genes but of promoters that
provide accurate and stable spatial and tempo-
ral control of the expression of the genes (12).
Development of cis-genic vectors and marker-
free transgenic plants (Box 1) may help to ease
some of the political concerns about GM tech-
nologies. Nevertheless, the widespread appli-
cation of GM technologies will remain limited
while regulatory demands impose high costs
on releasing GM crops (Box 1). Although it is
likely that most of the important contributions
to crop improvement in the coming 5 to 10 years
will continue to be from non-GM approaches, we
consider that transgenic technologies will inevi-
tably be deployed for most major crops in the
future.

Methods of crop breeding have undergone
major changes, and a range of technologies is
improving the rate and success of crop improve-
ment in some breeding programs, but these have
yet to be widely adopted. Contributions are be-
ing made through new selection strategies that
are informed by sophisticated genetics, the use
of computers to track and manage field trials, and
biometric methods for field-trial design and as-
sessment of interactions between genotype,
environment, and management (13).

Marker-assisted selection (MAS) techniques
(Box 1) are free of the political issues that have
plagued the application of GM technologies.
MAS involves using variation at the DNA level
to track and monitor specific regions of the ge-
nomes during crossing and selection (14). The
greatest benefit of MAS occurs where the target
traits are of low heritability, are recessive in
nature, and involve difficult and costly phenotyp-
ing, and where pyramiding of genes is desired for
results such as disease and pest resistance. In
these cases, MAS is likely to be more reliable,
more convenient, or cheaper than phenotype-
based selection, and MAS currently provides the
only viable method for gene pyramiding. Molec-
ular markers are also important in analyzing the
mode of inheritance of certain traits and assess-

ing genetic diversity. In cases where desirable
traits are closely linked and in repulsion, markers
can be critical in selecting rare recombination
events.

In many cases, MAS provides an important
alternative to phenotypic selection. However,
the success of markers depends on their reliabil-
ity in predicting phenotype. Many key stresses
associated with rapid environment changes, no-
tably drought and salinity tolerance, are com-
plex and highly variable. For these types of
traits, it is necessary to dissect tolerance into
component contributory traits and to identify
genetic regions encoding the traits, rather than
overall plant tolerance (6, 15, 16). However, this
genetic approach requires high-throughput phe-
notyping (phenomics) (17) (Box 1). Phenomics
also allows screening of populations for par-
ticular traits and will facilitate the introgression
of novel variation from wild germplasm. Phe-
nomics will enable tighter definition of the prop-
erties of molecular markers, allowing introgression
of appropriate combinations of tolerance traits
into commercial varieties for particular target
environments.

The combination of reliable phenotyping and
MAS has been particularly important in trans-
ferring desirable alleles by simple backcrossing
into elite germplasm. Although MAS has been
used to track multiple independent loci (18), con-
ventional breeding schemes become quite com-
plex as the number of target loci expands. To
overcome the problems of dealing with multiple
loci, in particular, multiple loci of small genet-
ic effect, two relatively new methods involving
MAS can be deployed: marker-assisted recurrent
selection (MARS) and genome-wide or genomic
selection (GWS) (19, 20) (Box 1). MARS in-
volves crossing selected individuals at each se-
lection cycle so that desirable alleles at the target
loci are introduced one at a time or through the
merging of multiple crossing and selection streams.
A problem with this approach is that it is most
effective for genes or quantitative trait loci (QTLs)
of major effect. In contrast, GWS does not require
prior information on marker trait associations and
can be used to select for multiple loci of small
genetic effect. In this approach, populations are
extensively genotyped to give full genome cover-
age and phenotyped. Subsequently, these data
allow the prediction of phenotypic performance
of an individual on the basis of whole-genome
marker surveys.

These new breeding and selection strategies
rely on the availability of cheap and reliable
marker systems. A serious limitation in marker
application for some species has been the paucity
of useful markers. However, the new sequencing
platforms have allowed large-scale discovery of
single-nucleotide polymorphisms (SNPs) for spe-
cies where few markers were previously available.
The new marker systems combined with the new
marker-based selection and screening strategies

provide a base for a revolution in crop breeding
and genetics.

Expanding the Germplasm Base
for Plant Breeding
The success of plant breeding over the past cen-
tury has been associated with a narrowing of
the available genetic diversity within elite germ-
plasm, particularly for some species such as
peanut and soybean. New sources of variation
include landraces and wild relatives of crop
species, and although exploiting wild relatives
as a source of novel alleles is challenging, it has
provided notable successes in crop improve-
ment. A particularly important example of the
introgression of genetic information from a rela-
tive was the use of the short arm of rye chro-
mosome 1R in wheat. In the early 1990s, this
wheat-rye translocation was used in 45% of 505
bread wheat cultivars in 17 countries (21). In-
creasingly easy gene discovery, improved en-
abling technologies for genetics and breeding,
and a better understanding of the factors lim-
iting practical exploitation of exotic germplasm
promise to transform existing, and to accelerate
the development of new, strategies for efficient
and directed germplasm use (Box 1).

Most crop geneticists agree that enrichment
of the cultivated gene pool will be necessary to
meet the challenges that lie ahead. However,
to fully capitalize on the extensive reservoir of
favorable alleles within wild germplasm, many
advances are still needed. These include increas-
ing our understanding of the molecular basis for
key traits, expanding the phenotyping and geno-
typing of germplasm collections, improving our
molecular understanding of recombination in
order to enhance rates of introgression of alien
chromosome regions, and developing new breed-
ing strategies that permit introgression of multi-
ple traits (22). Recent progress has shown that
each of these challenges is tractable and within
reach if some of the basic problems limiting the
application of new technologies can be tackled.

Limitations in Applying the New Technologies
Several issues are likely to limit the application
of these new methods, particularly for breeding
programs in the public sector (Box 1). Regula-
tory complexity and high costs have prevented the
widespread delivery of GM technologies (Box 1).
Over the coming decade or so, however, it seems
inevitable that GM technologies will become
much more widely used—it is probably a case of
“when,” not “if.” A consequence emerging for
crops that are now dominated by GM varieties
(such as cotton, soybean, and maize) is that
breeding programs are now based around GM
varieties, and consequently, breeding programs
in non-GM jurisdictions have limited access to
current advances. The key limitations for tra-
ditional breeding include lack of resources,
training, and capabilities for most of the world’s

www.sciencemag.org SCIENCE VOL 327 12 FEBRUARY 2010 821

SPECIALSECTION

 o
n 

A
ug

us
t 1

1,
 2

01
1

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org/


crop improvement programs (23, 24) (Box 1). It
is important, therefore, that we expand the scope
of and access to newmarker platforms to provide
efficient, cost-effective screening services to the
breeders. Communication and mechanisms for
delivery of material to breeders must be devel-
oped. There is an urgent need to expand the
capacity of breeding programs to adopt new strat-
egies. The clearly documented high rate of return
on such investments in the past should be kept in
mind (25).

The concerns about food security and the
likely impact of environmental change on food
production have injected a new urgency into ac-
celerating the rates of genetic gain in breeding
programs. Further technological developments are
essential, and a major challenge will be to also
ensure that the technological advances already
achieved are effectively deployed.
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PERSPECTIVE

Smart Investments in Sustainable
Food Production: Revisiting Mixed
Crop-Livestock Systems
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D. Bossio,4 J. Dixon,5 M. Peters,6 J. van de Steeg,1 J. Lynam,7 P. Parthasarathy Rao,8
S. Macmillan,1 B. Gerard,9 J. McDermott,1 C. Seré,1 M. Rosegrant2

Farmers in mixed crop-livestock systems produce about half of the world’s food. In small holdings
around the world, livestock are reared mostly on grass, browse, and nonfood biomass from maize,
millet, rice, and sorghum crops and in their turn supply manure and traction for future crops.
Animals act as insurance against hard times, and supply farmers with a source of regular income
from sales of milk, eggs, and other products. Thus, faced with population growth and climate
change, small-holder farmers should be the first target for policies to intensify production by
carefully managed inputs of fertilizer, water, and feed to minimize waste and environmental
impact, supported by improved access to markets, new varieties, and technologies.

“Business as usual” investments in ag-
riculture, although necessary (1, 2),
are unlikely to deliver sustainable

solutions as the world rapidly changes (3, 4). At
the recent G8 summit in Italy, the leaders of the
world’s wealthiest countries promised to invest
U.S.$20 billion to improve global food secu-
rity. Most of that money is likely to flow to the
developing world, where over the next few de-
cades agricultural systems, already facing a va-

riety of stresses, will be expected to accommodate
a massive population surge. Even an investment
of this magnitude could fail to generate food se-
curity if its deployment is not well planned and
based on sound science.

The usual culprits, such as inefficient aid de-
livery, government corruption, and political un-
rest, are a barrier to progress but are not the most
important problem. Rather, it involves a fun-
damental failure to appreciate the range of dif-

ferent agricultural systems that are expected to
feed our planet in the coming decades and their
policy needs. The diverse pressures that are act-
ing on agricultural systems in various parts of
the world include population increase, rising in-
comes and urbanization, a rapidly rising demand
for animal products in many developing coun-
tries, and a fierce competition for land and water
(3, 5, 6), all of which will have profound effects
on food security (1). Croppers and livestock
keepers the world over have steadily accumu-
lated local experience and knowledge that will
help them to adapt in the future, but the rapid
rates of change seen in many agricultural sys-
tems in developing countries may simply outstrip
their capacity.Yet, recent scientific assessments
(1, 2, 7–10) and the technical and policy re-
commendations that flow from them have not
fully captured the complex biological, social,
and economic dynamics of the variety of chal-
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