Chapter 19

Substitution at the
Carbonyl Group
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Substitution at Carbonyl Group

m Nucleophilic addition: RDS
m Tetrahedral mechanism: SP3-hybridized intermediate
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Too basic to act as leaving groups in the S,2 reaction
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Reactivity

m Steric effects: slowed by steric hindrance

m Inductive effects
EWG - mole electrophilic carbonyl - increase the rate

EDG - decrease the rate

m Resonance effects
Resonance : electron-donating group - decrease the rate

m Effect of LG

Weaker bases: products are favored at equilibrium

Resonance effect Inductive effect

Resonance effect Inductive effect
QO it :0 e :0: :0
| g, |+ | e, I . |+ s
R—C—CI: D — R—C=CI: R—C—CI: R—C—NH, <«—> R—C=NH, R—C—NH,
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i ; Stronger resonance donor Weaker inductive
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Reactivity Scale for Carbonyl Compounds

Compound Structure Leaving Group Comment
O ] Less
Most /\ || : o favored at
reactive Acyl chloride R—E—C) Cl equilibrium
compound
O 0] O
i ]
Anhydride R—E—0—E—R O—C—R
O
i
Aldehyde R—C—H First step only
O
- _
Inereasing Ketone R—C—R First step only Increasing
reaction o equilibrium
rate | constant
Ester R—C—O—R' 0O—R Esters and acids are
very similar in both
(8] rate and equilibrium
” position
Acid R—C—O—H O—H
7
Amide R—C—NH, NH_‘
Least O More
reactive | ) Poor leaving group; v favored at
compound | | Carboxylate anion R—C—0 0 seldom leaves equilibrium

I I
R—C—Cl + H—HO—R' <> R—C—O—R' + HCI
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Lower on the reactivity scale
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Preparation of Acyl Chlorides

m  Acyl (acid) chlorides: RCO-CI (chloride)
Most reactive: to prep other derivatives
SOCI,, PCl;, PCI,

CH; O ﬁ) CH; O
CH;CH—C—OH + C1—S—Cl — CH;CH—C—Cl + SO;(g) + HCl(g) (90%)

2-Methylpropanoic Thionyl 2-Methylpropanoyl
acid chloride chloride
€ 2005 Brooks/Cole - Thomson
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CH; O: ~0: CH';‘(}_S_(;I: CH; O*E O:
] ] O, byl \J e =
CH;CH‘—( + CI_ CI — CH;CH_( e, —— CH;CH_‘( —{)— —(|
2 Res 0]
o o:
A mixed
H Thionyl chloride anhydride
B A :C1: l@
A carboxylic acid
CH, :0 CH; 10~ Ei:
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Preparation of Anhydrides

From acyl chlorides: with a base
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Pyridinium chloride
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Carboxylic acid with other anhydride : Mixed ahnydride

m Removal of acetic acid by distillation
I R R i
2 PhCOH + CH;COCCH; <= PhCOCPh + 2 CH;COH  (74%)

| N
PhCOCCH;
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Preparation of Esters

m Alcohol with either acyl chloride or anhydride

i i
0 CCH 0o CCH
|| - - 3 ” 3 /
C—Cl HO cC—0O ‘
g g
Q/ N pyridine O/ ¢ N @
H
cl
i
C—OH C OH O
@: + CH;( OCCH; —— C[ + CH; COH (88%)
OH 0( CH;
Salicylic acid Acetylsalicylic acid
(aspirin)
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O
OH 1) SOCl, (75%)
2) PhOH
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Preparation of Esters

m Fischer esterification: acids & alcohol ?

T
©/( “OH H,S0, @’/(‘\UCHg
. . I . + CH;0H -— + H,0 (93%)
mechanism: acid catalyst/equilibrium
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I H—A = 2]
Ph—C—OH Ph—C—OH i Ph—C—OH
(1] C I
e H,C—O—H
CH,OH TR Hy
off 5/
This is the tetrahedral intermediate in the = _H
mechanism for acidic conditions. It differs -0
from the one in Figure 19.1 only in that the | Tetrahedral
. g Ph—C—OH . :
oxygen is protonated. Note the similarity J intermediate
of the steps leading away from this H,C—O: \
intermediate in both directions. ’ 2 ..'l
4
ot HA
— '\‘ I /‘
/ + ™ = ...-’
10: O :o;\H =0
I A.— ([t —H,0 ~| %, +
Ph—C—0—CHj; i Ph—C—0O—CH;, Ph—C—0O—H
(6] (5] e
H_;C—_Q: H
o}
i Y CH ”‘()H i
lactones: cyclic esters Lo A o
T“ 0 + H,O (97%)
i “SoH 10 min o
H H
A lactone

(a cyclic ester)
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Preparation of Carboxylic Acids

m Hydrolysis of acid derivatives: RCOY —» RCO,H

Acyl chlorides & Anhydrides: reactive

Esters: acid / base (saponification),

Amides: needs harsh conditions for hydrolysis
Nitriles: amide intermediate
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Preparation of Carboxylic Acids

m  Acyl chlorides & anhydrides hydrolysis

" 0
OH
OH
m Ester O 0

Acidic conditions: reverse of Fischer esterification
Basic condiions : Saponification (H| < 3t)

:6"": -0 0 A :Ej
|| i -.’n . 0 e PI |'f '*l || 'T' .\l' @ || 2 .
CH,—C—O0—CH,CH, — (’,‘H3—4:|‘—()—CHZC‘H_q = CH,—C—D-H —> CH—C—0:
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Preparation of Carboxylic Acids

m  Amide Hydrolysis
Less reactive than esters: vigorous heating in aueous acid or base

Acidic conditions: similar to the reverse of the Fischer esterification
Basic conditions: protonation of NH,- before leaving

10 < 00 08
o I 2 >+ o
CH3C—NH, = CH;C—NH, CHACNH, + :OH
. o T 2
\ H \J
L i 0H \_ | :OH
=gl 0
\A
Jo
0l
I .. " o A
CH,C—O0: + H,0: CH;C—O—H + :NH,
@ Loy
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Preparation of Carboxylic A

m Nitrile Hydrolysis
Amide intermediate

0
. H-SO ;
rcfiux
© 2006 Brooks/Cole - Thomson
O
(‘%N ii CH,—Cl NI.(N
S
HCI NH, S6% ZEs'OH>
i W 2
1,0 (86%)
400C ©2006 Broaks/Cole - Thomson
Tm—— Amide under mild
conditions
. N2 E‘I N—H
V o Vi — H ..
Ph—C=N: Ph—(‘\ = Ph—(\ 0
6_H o—H 200 He )
e
H .'ﬂl
| 10—H+——__ i
:N—H i — :'N—H N—H
v H /
Ph—('\\ Ph—(‘\\ «—> Ph—(\
20 © 0 2

cids

+
+ NH, (95%)
o
CH,—C=N CH,—C—OH
H,S0,
o ]
H,0
H,C reflux H;C CH,
(93%) (87%)

H
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Preparation of Amides

m Acyl chloride/ anhydride with ammonia or amine

(0] 0]
| i

C C
o, \N(CH")H CHyNH,  (89%
2)2 (CH3),NH ( (gl > (89%)

0O

| NaOH
PhCH,NH, + Cl—C—OCH,CH, g—()» PhCH,NH—C—OCH,CH;  (96%)
2

i
NH, NH—CCH,

O
9 H I
I | NaOCCH;
+ CH;C—O—CCH; T‘“ (98%)
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0
| [ 0
C—OH c—0~ *NH,
2 NH, 280°C
LN LN NH  (83%)
(”"—OH (H"—o_ *NH,
0 0 g
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Reaction with Hydride Nucleophiles :
Ester - Alcohol

m Carboxylic acid derivatives with hydride —>alcohol
From Ester
From Acyl chlorides and Anhydrides (less convenient to work with)

I
2 PhC—OCH,CH;
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LiAIH, H;0'

2 PhCH,OH + 2 CH,CH,OH (90%)

~0: W ~0:
l ' o .A| ."If-'o 9 = Llos e
Ph—(C—O—CH,CH, — Ph—(|'~—()——~CH2CH3 == Ph—C—H + CH,;CH,—O:
PEERE = S
|
ooy H \
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Reaction with Hydride Nucleophiles :
Carboxylic acid - Alcohol

From caboxylic acid

.O. H—Al—H O
. ~ . OH
”‘ s /\/H i |i CH3O (H C]—[.‘O (HI
.. (fast) — (93%)
(1) 0 5 2) H;0
(low) l |_ OCH; OCH,
(@) | i
o Ny ? A O._~ 1)LiAlH, AN g OH
(fast) (3] 6] — > HO (83%)
——— W Phe—(C—H m Ph— (| ( | Al—H 5 2) H;0
H S
_I/\j H \} H

m NaBH, is less reactive (more selective) than LiAIH,
Reduction of aldehyde or ketone w/out reducing ester

NaB H4
CH- OC CH- OC 87%

0°C
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Reaction with Hydride Nucleophiles :
Amide - Amine

m Reduction of Amides with LIAIH, = Amine

O
| 1) LiAlH,
CH;(CH,),oCNHCH; MO > CH;5(CH,),(CH,-NHCH; (95%)
) Hy
\
s A...,/"I\]
(") :c|) ) Qi (|)"

Ph—C—N—CH,CH, — 2 » Ph—C —N—CH,CH, Ph—C—N—CH,CH, O: weak base
f/_| = H \__,,ff‘—““\ |- | fu‘ ) ] ’
e H\J\? . o H—?\l— H better leaving

I|I ‘ group than N
le
=|
1‘[ |-|[ i *f‘l\'*\“d,__\
Ph—(“—.N|'—CH2CH7, L Ph—C—N—CH,CH; — Ph—(‘=i;3—CH3CH3
H H H—0:) H ) l|1 \/

Het————

m  Reduction of nitriles with LiAIH, = 1° Amine

CH; CHs,

N ;
C CH,NH,
1) LiAlH,, ether, reflux
2) H,0 i g
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Reduction of Acid Derivatives to Aldehydes

m  Lithium tri-t-butoxyaluminum hydride: LIAIH(Ot-Bu),

\ C—Cl C—H
" ‘
A —78°C
HsC (|3 CHj + LiAlIH(Ot-Bu); ———> (81%)
r_‘) (|3H3
Li H— \f—o—(lj—cm NO, NO,
| 5 2
(l) CH; o] (0]
[ [l
HgC—(li—CH; c—cl Gl
_780(: H 5
CH, O/ + LiAlH(Ot-Bu); —— O/ o

Lithium tri-r-butoxyaluminum hydride [LiAIH(Ot-Bu)s]
(reduces an acyl chloride but not an aldehyde)
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m Diisobutylaluminum hydride: i-Bu,AlH

CH,CHCH;
7
H—AI
\
CH,CHCH;

|
CHj

Diisobutylaluminum hydride
(DIBALH or i-Bu,AlH)
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Reactions with Organometallic Nucleophiles

m Ester 2 Ketone - Alcohol

© The organometallic nucleophile attacks @ The electrons on the negative oxygen
the carbonyl carbon and displaces the pi reform the pi bond as the ethoxide © The ketone also reacts with the Grignard
electrons onto the oxygen. anion |eaves. reagent as discussed in Chapter |8,
10« S0~ 10«
l= 0 = (2] [E=
CH;—C—OCH,CH; —— CH3—(| 7 OCHCH; ——— > CH;—C—CHyxCH;
&}
BTMg—CHQCH‘; CH2CH3
CH;CH,~~MgBr | @
H
]
= H—N—H<—__ ..
:0—H | B
@ When the reaction is worked up by the addition | H |
of acid, the alkoxide ion is protonated to produce CH;—C—CH,CHj,4 CH3;—C—CH,CH;
an alcohol. In this example the yield is 67%. I (4]
CH,CHj CH,CHj
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Preparation of Ketones

m  Acyl chloride with lithium diorganocuprate reagent

CH; O CH, cH)

|l |
CH,CH—C—Cl + Ph,CuLi —> CH;CH—C—Ph  (67%)

0 0
N ( /\I}CuLi . /J\/L./\ (70%)
)\/L(TI # 2 AN
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m Nitrile with a Grignard reagent

' ?
MgBr C G
_ benzene \CH3 I 13O+ \CH_; 3
+ CH3—C=N —— —_— + NH,

(68%)

2006 Braoks/Cole - Thomson

7 W Too weak electrophile to
CH,—C—=N: o CH,—C—Ph react with the Grignard
’\_/—\
Ph—~MgBr +.9 reagent
H—O—H
(2] '|
H
0 i
[ " H:0™ [
CH;—C—Ph + "NH, - CH;—C—Ph



Derivatives of Sulfur

m Sulfonic acid

O
: . [

One OH group of sulfuric acid 2 R HO——OH
Stronger acid than carboxylic acids, &

but similar behavior

I T
”
CH34©75|‘—CI + HO(CH,);CH; 2——» CH;A@*W—O(CHZ)&H;
0 0

p-Toluenesulfonyl chloride
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] { ]
\ ., NH; s
H;CNH S—Cl ——— CH;CNH
e Qu 0" O
0]
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cl cl
NH,
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H,S0,
—_—

H,O
reflux

Cl

OH

\
0=S=0

NH,

Cl

Sulfuric acid

(90%)

A toluenesulfonate ester

1) HCI (ﬁ
3 H,0 7 U
kL 2) NaHCO5 HENQE NH;
0}
p-Aminobenzenesulfonamide
LeSS . (sulfanilamide)
reactive for
hydrolysis
(80%)

O

I
R—ﬁ—OH
0

A sulfonic acid
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Derivatives of Phosphorus Acids

m Pyrophosphoric acid

O
Cl—P—Cl + (CH3;),NH —>
| excess
Cl
Phosphorus
oxychloride
™
CH;,CH—O—}')—CI + F
CH3(|:H—O
CH;

O
(CHs)zN—l|’—N(CH3)z
N(CHs),

Hexamethylphosphoric triamide
(HMPA)

™ 9

—> CHBCH—O—T—F + Cl

CH3C|H—O
CH;,

Diisopropylphosphorofluoridate
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(DFP)

O 0]
HO*llzl’*OH HO*]!*O*#*OH
o o on
Phosphoric acid Pyrophosphoric acid

NH,
N ~
0 0 0 </ | N
RN o
O—P—O—P—O—IT—O—CHZ o. N>\
0 0 0 \Q/

HO OH

Adenosine triphosphate
(ATP)
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¢ Sulfur & Phosphorus Analogues

m sulfonic acid: RSO,-OH

RSO,-CI (sulfonyl chloride), RSO,-OR’ (sulfonate), RSO,-NR'R”
(sulfonamide): &1 728~729

m phosphoric acid: (O)P(OH),; 0 729

(O)P-CI, (phosphoryl chloride), (HO),P(O)-O-(O)P(HO),
(pyrophosphoric acid), (O)P-(OR);’ (triphosphate), (O)P-(NR,);’
(phosphoric triamide)

nerve gases & pesticides: (1 838 - 839 Elaboration
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Summary
0 0¥- O
. < n )
R—C—L + Nu —» R—C—=—L —> R—C—Nu + L
| \4
Nu
Tetrahedral
intermediate
Most reactive Least reactive

I N I 1 I I
RCCI > RCOCR > RCOR' and RCOH > RCNH, > RCO

20086 Brooks/Cale - Thomsan

Practice & Report : Problem 29, 37, 39, 42, 50, 57, 58
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