Chapter 19 Substitution at the Carbonyl Group

Substitution at Carbonyl Group

- Nucleophilic addition: RDS
- Tetrahedral mechanism: SP³-hybridized intermediate

Too basic to act as leaving groups in the S_N^2 reaction

Reactivity

- Steric effects: slowed by steric hindrance
- Inductive effects
 - \square EWG \rightarrow mole electrophilic carbonyl \rightarrow increase the rate
 - \Box EDG \rightarrow decrease the rate
- Resonance effects
 - \square Resonance : electron-donating group \rightarrow decrease the rate
- Effect of LG
 - □ Weaker bases: products are favored at equilibrium

© 2006 Brooks/Cole - Thomson

Reactivity Scale for Carbonyl Compounds

Compound		Structure	Leaving Group	Comment	
Most reactive compound	Acyl chloride		CI		Less favored at equilibrium
	Anhydride	$ \begin{array}{c} 0 & 0 \\ \parallel & \parallel \\ R - C - 0 - C - R \end{array} $	\bar{O}		
	Aldehyde	O R−C−H		First step only	
Increasing reaction rate	Ketone	$\mathbf{R} = \mathbf{C} = \mathbf{R}'$		First step only	Increasing equilibrium constant
	Ester	R - C - O - R'	Ō—R'	Esters and acids are very similar in both rate and equilibrium	
	Acid	R−C−O−H	ō—н	position	
	Amide	$\stackrel{O}{\mathbb{R}}$	$\overline{N}H_2$		
Least reactive compound	Carboxylate anion	$\mathbf{R} - \mathbf{C} - \mathbf{\bar{o}}$	O ²⁻	Poor leaving group; seldom leaves	More favored at equilibrium

© 2006 Brooks/Cole - Thomson

$$\begin{array}{c} O \\ \parallel \\ R - \underbrace{C} \\ - \underbrace{Cl} \\ + \underbrace{H} - O - R' \quad \overleftarrow{} \quad R - \underbrace{C} \\ R - \underbrace{O} \\ - \underbrace{R' \\ + \underbrace{HCl} \\ + \underbrace{HCl} \end{array}$$

Lower on the reactivity scale

Preparation of Acyl Chlorides

Acyl (acid) chlorides: RCO-Cl (chloride)

Most reactive: to prep other derivatives

Preparation of Anhydrides

□ From acyl chlorides: with a base

Carboxylic acid with other anhydride : Mixed ahnydride

Removal of acetic acid by distillation

Preparation of Esters

Alcohol with either acyl chloride or anhydride

Preparation of Esters

Fischer esterification: acids & alcohol

mechanism: acid catalyst/equilibrium

- Hydrolysis of acid derivatives: $RCOY \rightarrow RCO_2H$
 - □ Acyl chlorides & Anhydrides: reactive
 - □ Esters: acid / base (saponification),
 - Amides: needs harsh conditions for hydrolysis
 - Nitriles: amide intermediate
 - $\Box \text{ R-CO}_2\text{H} \rightarrow \text{R-CH}_2\text{CO}_2\text{H}$

Acyl chlorides & anhydrides hydrolysis

$$\begin{array}{c} : \overset{; \overset{;}{\text{CH}}}{\xrightarrow{}} - \overset{; \overset{;}{\text{CH}}}{\xrightarrow{}} - \overset{; \overset{;}{\text{CH}}}{\xrightarrow{}} - \overset{; \overset{;}{\text{CH}}}{\xrightarrow{}} \overset{; \overset{;}{\text{CH}}}{\xrightarrow{}} - \overset{; \overset{;}{\text{CH}}}{\xrightarrow{}} \overset{;}{\text{CH}} \overset{;}{\xrightarrow{}} \overset{;}{\text{CH}}}{\xrightarrow{}} \overset{;}{\xrightarrow{}} \overset{;}{\text{CH}} \overset{;}{\xrightarrow{}} \overset{;}{\xrightarrow{}} \overset{;}{\text{CH}}}{\xrightarrow{}} \overset{;}{\xrightarrow{}} \overset{;}{\text{CH}}}{\xrightarrow{}} \overset{;}{\xrightarrow{}} \overset{;}{\xrightarrow{}} \overset{;}{\text{CH}}}{\xrightarrow{}} \overset{;}{\xrightarrow{}} \overset{;}{\overset{;}}{\xrightarrow{}} \overset{;}{\xrightarrow{}} \overset{;}{\overset{;}} \overset{;}{\xrightarrow{}} \overset{;}{\overset{;}} \overset{;}{\xrightarrow{}} \overset{;}{\overset{;}} \overset{;}{\overset{;}$$

- Amide Hydrolysis
 - Less reactive than esters: vigorous heating in aueous acid or base
 - □ Acidic conditions: similar to the reverse of the Fischer esterification
 - Basic conditions: protonation of NH₂- before leaving

- Nitrile Hydrolysis
 - Amide intermediate

Preparation of Amides

Acyl chloride/ anhydride with ammonia or amine

© 2006 Brooks/Cole - Thomson

Carboxylic acid with amine: lactams / imides

Reaction with Hydride Nucleophiles : Ester → Alcohol

- Carboxylic acid derivatives with hydride →alcohol
 - From Ester
 - □ From Acyl chlorides and Anhydrides (less convenient to work with)

Reaction with Hydride Nucleophiles : Carboxylic acid \rightarrow Alcohol

From caboxylic acid

NaBH₄ is less reactive (more selective) than LiAIH₄
 Reduction of aldehyde or ketone w/out reducing ester

Reaction with Hydride Nucleophiles : Amide → Amine

• Reduction of Amides with $LiAIH_4 \rightarrow Amine$

O: weak base, better leaving group than N

• Reduction of nitriles with $\text{LiAlH}_4 \rightarrow 1^\circ$ Amine

Reduction of Acid Derivatives to Aldehydes

Lithium tri-t-butoxyaluminum hydride: LiAlH(Ot-Bu)₃

Reactions with Organometallic Nucleophiles

Ester → Ketone → Alcohol

© 2006 Brooks/Cole - Thomson

Preparation of Ketones

Acyl chloride with lithium diorganocuprate reagent

Nitrile with a Grignard reagent

Too weak electrophile to react with the Grignard reagent

Derivatives of Sulfur

Derivatives of Phosphorus Acids

Sulfur & Phosphorus Analogues

sulfonic acid: RSO₂-OH

- RSO₂-CI (sulfonyl chloride), RSO₂-OR' (sulfonate), RSO₂-NR'R" (sulfonamide): 728~729
- phosphoric acid: $(O)P(OH)_3$; \square 729
 - (O)P-Cl₃ (phosphoryl chloride), (HO)₂P(O)-O-(O)P(HO)₂
 (pyrophosphoric acid), (O)P-(OR)₃' (triphosphate), (O)P-(NR₂)₃'
 (phosphoric triamide)
 - □ nerve gases & pesticides: □ 838 839 Elaboration

Summary

Practice & Report: Problem 29, 37, 39, 42, 50, 57, 58