

10.3 Ligand Field Theory

- Fig. 10.9: CN^- MO

: both σ - & π -interaction

- HOMO of CN^- : donor orbital σ bonding to form

- LUMO of CN^- : two empty π^* orbitals $\rightarrow \pi$ -bonding

10.3 Ligand Field Theory

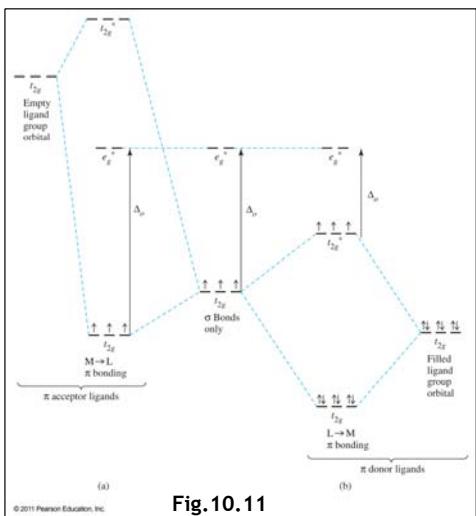


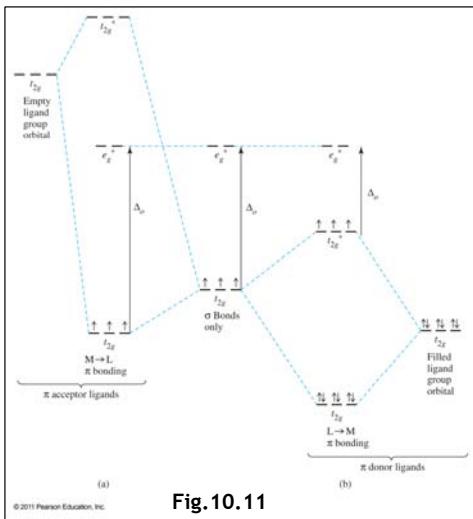
Fig.10.11

- (a): E (ligand π^* orbitals) $>$ E (M's t_{2g})

↳ forming $\begin{cases} t_{2g}^* \text{ (anti-)} \rightarrow \text{higher than } e_g^* \\ t_{2g} \text{ (bonding)} \rightarrow \text{lower than the initial M's } t_{2g} \end{cases}$

↳ M's d e^- \rightarrow occupy the bonding orbitals (HOMO)

$\Delta_o \uparrow$, bonding strength \uparrow


This is metal-to-ligand (M-L) π bonding

(= π back-bonding)

↳ e^- : from M's d \rightarrow to ligands (π acceptor)

10.3 Ligand Field Theory

- (b): ligands w/ e⁻ in p orbitals (e.g. F⁻, Cl⁻)
 - ↳ bonding molecular π orbitals: occupied by these e⁻

↓

- 1) t_{2g} bonding orbital: strengthen the ligand-M bond
- 2) t_{2g}^{*} (primarily derived from M): E ↑
: become antibonding

↓

$\Delta_g \downarrow$, e⁻: derived from M's d → to ligand t_{2g}^{*}

↳ this is ligand-to-metal (L → M) π bonding

- combined σ & π donations from ligands
- ↳ more '-' charge on M
- ↳ decrease attraction b/w M & L
- ∴ less favorable bonding !!

10.3 Ligand Field Theory

- filled π or p orbitals on ligands w/ lower E
 - ↳ L → M π -bonding, $\Delta_g \downarrow$
 - ↳ stability ↓, favors high-spin
- empty π or d orbitals on ligands w/ higher E
 - ↳ M → L π -bonding, $\Delta_g \uparrow$
 - ↳ stability ↑, favors low-spin

10.3.2 Orbital Splitting and Electron Spin

- in octahedral coordination complexes,
 - ↳ e^- from the ligands \rightarrow all six bonding MO
 - ↳ e^- from M ion $\rightarrow t_{2g}$ & e_g^*
- strong-field ligands: strong interaction b/w ligands & M ions
 - : large t_{2g} & e_g^* split
 - : Δ_o large
- weak-field ligands: weak interaction b/w ligands & M ions
 - : smaller t_{2g} & e_g^* split
 - : Δ_o small
- $\binom{d^0-d^3}{d^8-d^{10}}$: only one e^- configuration is possible
- d^4-d^7 : high-spin & low-spin states ➡ in summary: $\binom{\text{Strong ligand field} \rightarrow \text{large } \Delta_o \rightarrow \text{low spin}}{\text{Weak ligand field} \rightarrow \text{small } \Delta_o \rightarrow \text{high spin}}$

10.3.2 Orbital Splitting and Electron Spin

TABLE 10.5 Spin States and Ligand Field Strength
Complex with Weak-Field Ligands (High Spin)

Δ_o	t_{2g}	t_{2g}	t_{2g}	t_{2g}	t_{2g}
	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$
	t_{2g}	t_{2g}	t_{2g}	t_{2g}	t_{2g}
	d^1	d^2	d^3	d^4	d^5
Δ_o	$\uparrow \uparrow$ $\uparrow \downarrow \uparrow \downarrow$	$\uparrow \uparrow$ $\uparrow \downarrow \uparrow \downarrow$	$\uparrow \uparrow$ $\uparrow \downarrow \uparrow \downarrow$	$\uparrow \downarrow$ $\uparrow \downarrow \uparrow \downarrow$	$\uparrow \downarrow$ $\uparrow \downarrow \uparrow \downarrow$
	d^6	d^7	d^8	d^9	d^{10}

Complex with Strong Field Ligands (Low Spin)

Δ_o	t_{2g}	t_{2g}	t_{2g}	t_{2g}	t_{2g}
	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$
	t_{2g}	t_{2g}	t_{2g}	t_{2g}	t_{2g}
	d^1	d^2	d^3	d^4	d^5
Δ_o	$\uparrow \uparrow$ $\uparrow \downarrow \uparrow \downarrow$	$\uparrow \uparrow$ $\uparrow \downarrow \uparrow \downarrow$	$\uparrow \uparrow$ $\uparrow \downarrow \uparrow \downarrow$	$\uparrow \downarrow$ $\uparrow \downarrow \uparrow \downarrow$	$\uparrow \downarrow$ $\uparrow \downarrow \uparrow \downarrow$
	d^6	d^7	d^8	d^9	d^{10}

10.3.2 Orbital Splitting and Electron Spin

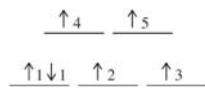
- E of pairing 2 e⁻: $\left(\begin{array}{c} \text{Coulombic } E \text{ of repulsion, } \Pi_c \\ + \\ \text{quantum mechanical exchange } E, \Pi_e \end{array} \right) + \Delta_o \rightarrow$ determines the orbital configuration of the e^{!!}

- Ground state: the lower total E orbital configuration

↳ if there are more, $\left(\begin{array}{c} \Pi_c \rightarrow \text{positive } E \rightarrow \text{less stability} \\ \Pi_e \rightarrow \text{negative } E \rightarrow \text{more stability} \end{array} \right)$

TABLE 10.5 Spin States and Ligand Field Strength									
Complex with Weak-Field Ligands (High Spin)									
Δ_o	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9
Δ_o	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9
Δ_o	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9
Complex with Strong-Field Ligands (Low Spin)									
Δ_o	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9
Δ_o	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9
Δ_o	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9

© 2011 Pearson Education, Inc.



10.3.2 Orbital Splitting and Electron Spin

Example on p.379) Determine exchange E of d^6 high-spin vs. low-spin

1) high-spin:

↳ exchangeable pairs

1-2, 1-3, 2-3, 4-5

↳ $4 \Pi_e$

2) low-spin:

© 2011 Pearson Education, Inc.

↳ exchangeable pairs

$(1-2, 1-3, 2-3) \times 2 = 6$

↳ $6 \Pi_e$

The difference b/w high- & low-spin $\rightarrow 2 \Pi_e$

10.3.2 Orbital Splitting and Electron Spin

- Δ_o : strong dependent to ligands & M

- Table 10.6: values of Δ_o for aqueous ions

↳ weak field ligand (small Δ_o)

- # unpaired e^- → depends on the balance b/w Δ_o & Π

1) If $\Delta_o > \Pi$: pairing e^- → in the lower levels

↳ net loss in E

↳ low-spin

2) If $\Delta_o < \Pi$: more unpaired e^- → lower total E

↳ high-spin

$Co^{3+} \rightarrow \Delta_o$ near the size of Π

↳ $[Co(H_2O)_6]^{3+}$: only low-spin complex

Ion	Δ_o	Π	Ion	Δ_o	Π
d^1			Ti^{3+}	18,800	
d^2			V^{3+}	18,400	
d^3	V^{2+}	12,300	Cr^{3+}	17,400	
d^4	Cr^{2+}	9,250	Mn^{3+}	15,800	28,000
d^5	Mn^{2+}	7,850 ^b	Fe^{3+}	14,000	30,000
d^6	Fe^{2+}	9,350	Co^{3+}	16,750	21,000
d^7	Co^{2+}	8,400	Ni^{3+}		
d^8	Ni^{2+}	8,600			
d^9	Cu^{2+}	7,850			
d^{10}	Zn^{2+}	0			

Sources: For Δ_o : M^{3+} data from D. A. Johnson and P. G. Nelson, *Inorg. Chem.*, 1995, 34, 5666; M^{3+} data from D. A. Johnson and P. G. Nelson, *Inorg. Chem.*, 1999, 38, 4949. For Π : Data from D. S. McClure, *The Effects of Inner-orbitals on Thermodynamic Properties*, in T. M. Dunn, D. S. McClure, and R. G. Pearson, *Some Aspects of Crystal Field Theory*, Harper & Row, New York, 1965, p. 82.

NOTE: "Values given are in cm^{-1} ".

^b Estimated value

10.3.2 Orbital Splitting and Electron Spin

- for greater ligand-metal interactions,,

↳ metal w/ higher charges

ex) $\Delta_o (3+)$ > $\Delta_o (2+)$

values (d^5) < values (d^4 , d^6)

- 2nd, 3rd row TM: forms low-spin complexes

↳ ∵ 1) greater overlap b/w larger 4d & 5d and ligands orbital

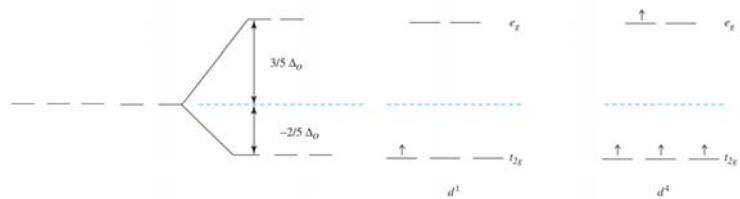
2) decrease of pairing E due to the

larger volume available for e^- in the 4d & 5d than 3d

10.3.3 Ligand Field Stabilization Energy

- ligand field stabilization E (LFSE): difference b/w

↳ $\begin{cases} 1) \text{total } E \text{ of a coordination complex from ligand field} \\ \text{splitting of the orbitals} \\ 2) \text{orbital } E \text{ for the same complex b/w all } d \text{ orbitals} \\ \text{are equally populated} \end{cases}$


: represent the stabilization of the d e^- due to the M -ligand environment

10.3.3 Ligand Field Stabilization Energy

- example) Fig. 10.12

© 2011 Pearson Education, Inc.

- Insertion of d orbitals w/ ligands orbitals

↳ splitting of orbitals E

↳ $\begin{cases} t_{2g} \text{ sets: lowered } E \text{ by } -2/5 \Delta_o \\ e_g \text{ sets: increased } E \text{ by } 3/5 \Delta_o \end{cases}$

ex) d^1 system: $-2/5 \Delta_o$

d^4 system (high spin): $3/5 \Delta_o + 3(-2/5 \Delta_o) = -3/5 \Delta_o$

10.3.3 Ligand Field Stabilization Energy

- Table 10.7) LFSE values for σ -bonded octahedral

complexes w/ 1-10 e⁻ in both hi-/lo-spin

↳ $(1 \rightarrow 3 e^-)$ → no diff. in E of unpaired e⁻ or
 $8 \rightarrow 10 e^-$ → the LFSE

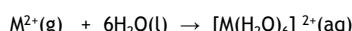
↳ 4 → 7 e⁻ → significant E . diff. in both

TABLE 10.7 Ligand Field Stabilization Energies

Number of d Electrons	Weak-Field Arrangement		LFSE (Δ_o)	Coulombic Energy	Exchange Energy	
	t_{2g}	e_g				
1			- $\frac{1}{2}$			
2	↑	↑	- $\frac{3}{2}$		Π_o	
3	↑	↑	↑	- $\frac{5}{2}$	$3\Pi_o$	
4	↑	↑	↑	↑	- $\frac{7}{2}$	$3\Pi_o$
5	↑	↑	↑	↑	0	$4\Pi_o$
6	↑	↑	↑	↑	- $\frac{9}{2}$	Π_o
7	↑	↑	↑	↑	- $\frac{11}{2}$	$2\Pi_o$
8	↑	↑	↑	↑	- $\frac{13}{2}$	$3\Pi_o$
9	↑	↑	↑	↑	- $\frac{15}{2}$	$4\Pi_o$
10	↑	↑	↑	↑	0	$5\Pi_o$

Number of d Electrons	Strong-Field Arrangement		LFSE (Δ_o)	Coulombic Energy	Exchange Energy	Strong Field - Weak Field
	t_{2g}	e_g				
1	↑		- $\frac{1}{2}$			0
2	↑	↑	- $\frac{3}{2}$		Π_o	0
3	↑	↑	↑	- $\frac{5}{2}$	$3\Pi_o$	0
4	↑	↑	↑	- $\frac{7}{2}$	Π_o	$3\Pi_o$ - Δ_o
5	↑	↑	↑	- $\frac{9}{2}$	$2\Pi_o$	$4\Pi_o$ - $2\Delta_o + 2\Pi_o$
6	↑	↑	↑	- $\frac{11}{2}$	$3\Pi_o$	$6\Pi_o$ - $2\Delta_o + 2\Pi_o + 2\Pi_o$
7	↑	↑	↑	- $\frac{13}{2}$	$4\Pi_o$	$6\Pi_o$ - $\Delta_o + \Pi_o + \Pi_o$
8	↑	↑	↑	- $\frac{15}{2}$	$5\Pi_o$	0
9	↑	↑	↑	- $\frac{17}{2}$	$6\Pi_o$	0
10	↑	↑	↑	0	$5\Pi_o$	$8\Pi_o$

NOTE: In addition to the LFSE, each pair formed has a positive Coulombic energy, Π_o , and each set of two electrons with the same spin has a negative exchange energy, Δ_o . When $\Delta_o > \Pi_o$ for d^6 or d^7 , or when $\Delta_o > \Pi_o + \Pi_o$ for d^8 or d^9 , the strong-field arrangement (low spin) is favored.



10.3.3 Ligand Field Stabilization Energy

- The most commonly cited example of LFSE in thermodynamic data,,

↳ Exothermic enthalpy of hydration of bivalent ions of the 1st TM

: for ions w/ spherical symm. → across the TM series

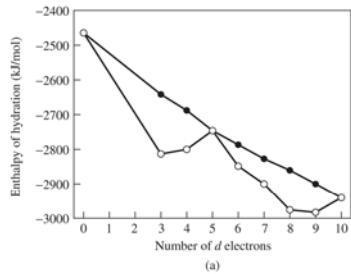
↳ radius of ions ↓

↳ nuclear charge ↑

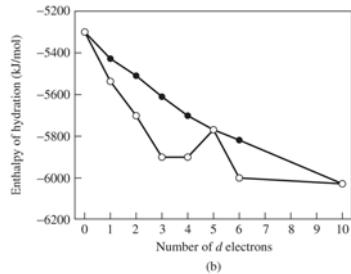
↳ electrostatic attraction ↑

↳ $\Delta H \rightarrow$ exothermic ↑

(more negative)



10.3.3 Ligand Field Stabilization Energy



- Fig.10.13. linear curve of the “corrected” enthalpies
vs.
double-humped experimental values

→ difference
↓
LFSE for high-spin

(a)

(b)

○ Experimental values
● Corrected values

© 2011 Pearson Education, Inc.

10.3.3 Ligand Field Stabilization Energy

- Why do we care about LFSE?

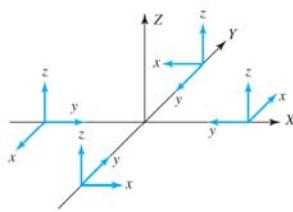
1) provides a more quantitative approach to the high-/low-spin e^- configuration

↳ helping predict which configuration will be more likely

2) basis of the spectra (Chapter 11)

↳ measurement of Δ_0 : allow more quantitative understanding of M-ligand interactions

10.3.5 Square-Planar Complexes


▪ Sigma Bonding

- $[\text{Ni}(\text{CN})_4]^{2-}$, D_{4h}

: y-axis \rightarrow toward the central atom $\rightarrow \sigma$ -bonding (p_y)

$\begin{cases} \text{x-axis} \rightarrow \text{plane of molecule} \rightarrow \pi_{\parallel} \text{ (or } p_x\text{)} \\ \text{z-axis} \rightarrow \text{perpendicular to the plane of the molecules} \rightarrow \pi_{\perp} \text{ (or } p_z\text{)} \end{cases}$

: Fig. 10.14

© 2011 Pearson Education, Inc.

TABLE 10.8 Representations and Orbital Symmetry for Square-Planar Complexes

D_{4h}	E	$2C_4$	C_2	$2C_2'$	$2C_2''$	\bar{I}	$2S_A$	σ_B	$2\sigma_{\sigma}$	$2\sigma_{\sigma'}$	
A_{1g}	1	1	1	1	1	1	1	1	1	1	$x^2 + y^2, z^2$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	\bar{R}_z
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1	$x^2 - y^2$
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1	xy
E_g	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y) (xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1	
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	z
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1	
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1	(xz, yz)
E_u	2	0	-2	0	0	-2	0	2	0	0	(x, y)

D_{4h}	E	$2C_4$	C_2	$2C_2'$	$2C_2''$	\bar{I}	$2S_A$	σ_B	$2\sigma_{\sigma}$	$2\sigma_{\sigma'}$	
$\Gamma_{\sigma}(y)$	4	0	0	2	0	0	0	4	2	0	(σ) Matching orbitals on the central atom: $s, d_{xy}, d_{x^2-y^2}, (p_x, p_y)$
$\Gamma_{\sigma}(x)$	4	0	0	-2	0	0	0	4	-2	0	(σ) Matching orbitals on the central atom: $d_{xy}, (p_x, p_y)$
$\Gamma_{\perp}(z)$	4	0	0	-2	0	0	0	-4	2	0	(\perp) Matching orbitals on the central atom: $p_z, (d_{z^2}, d_{yz})$

© 2011 Pearson Education, Inc.

Inorganic Chemistry 2

2011 Fall

T.-S. You

$\Gamma_{\sigma} = A_{1g} + B_{1g} + E_g$

(σ) Matching orbitals on the central atom:
 $s, d_{xy}, d_{x^2-y^2}, (p_x, p_y)$

$\Gamma_{\parallel} = A_{2g} + B_{2g} + E_g$

(σ) Matching orbitals on the central atom:
 $d_{xy}, (p_x, p_y)$

$\Gamma_{\perp} = A_{2u} + B_{2u} + E_u$

(\perp) Matching orbitals on the central atom:
 $p_z, (d_{z^2}, d_{yz})$