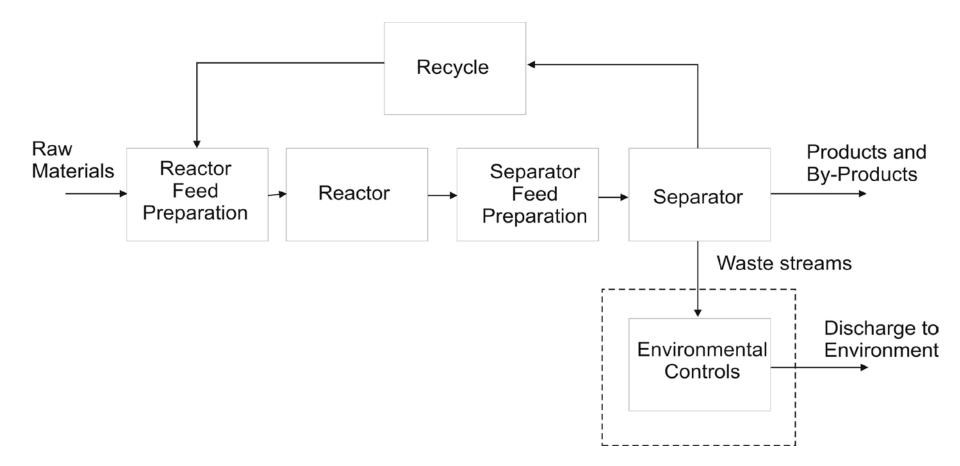
Chapter 2 – Structure and Synthesis of the Process Flow Diagram

State of the state

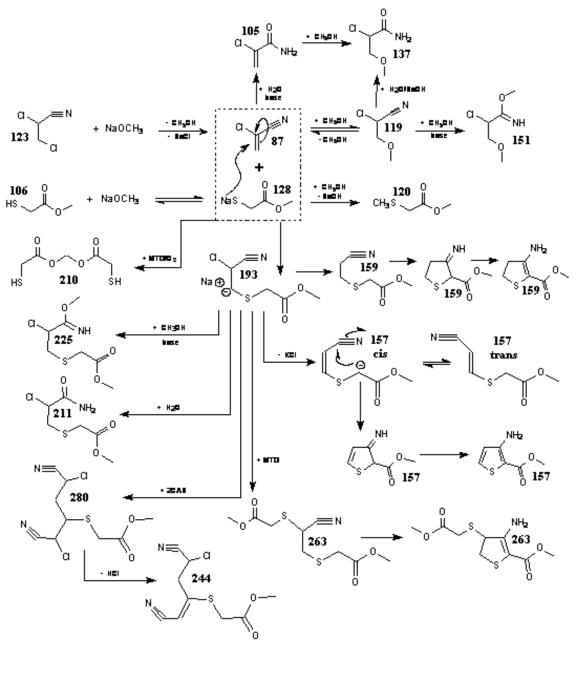
副門

ANKYONG NATIONAL UNIV


Prof. Byung-Hwan Um Chemical Engineering Hankyong National University Spring, 2012.

CHE 4101-Plant Design

Outline


- Generic Structure of Processes
- Process Design Hierarchy
 - Batch vs. Continuous Processes
 - Input Output Structure
 - Recycle Structure
 - General separation structure of process
 - Heat-exchanger network/process energy recovery

Generic Structure of Process Flow Diagrams

Generic Structure of Process Flow Diagrams

must know complete stoichiometry, including all byproducts

Generic Structure of Process Flow Diagrams

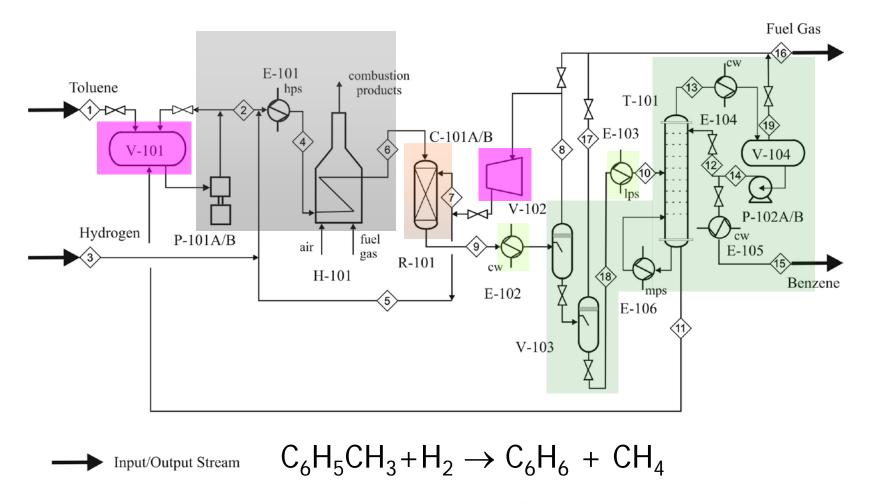


Figure 2.2 Input Output Streams on Toluene Hydrodealkylation PFD

Environmental Control

- End of Pipe vs. Green Approach
 - Most significant changes obtained by changing process chemistry within reactor – eliminate/minimize unwanted by-products
- End of Pipe vs. Common Units
 - Fired Heaters excess oxygen
 - low sulfur fuel NO_X control
 - Wastewater (biological, sedimentation/filtration)

Approach of Douglas¹

- 5-step process to conceptual process design
 - batch vs. continuous
 - input-output structure
 - identify and define recycle structure of process
 - identify and design
 - general structure of separation system
 - heat-exchanger network
 - or process energy recovery system

1 – Douglas, J.M., Conceptual Design of Chemical Processes, McGraw-Hill, NY, 1988

Batch vs. Continuous

- Variables to Consider:
 - Size
 - Batch < 500 ton/yr ~ 1.5 ton/day (< 2 m³ of liquid or solid per day)
 - Continuous > 5,000 ton/yr
 - Flexibility
 - Batch can handle many different feeds and products more flexible
 - Continuous is better for smaller product slate and fewer feeds

Batch vs. Continuous (cont.)

- Other considerations:
 - Continuous allows the process to benefit from the "Economy of Scale," but the price is less flexibility
 - Batch scale-up consists of multiple parallel units
 - Accountability and quality control FDA requires batch accountability
 - batch is more accident prone (safety)
 - Equipment scheduling is very important issue
 - Seasonal issues: e.g., antifreeze, food products

Input – Output Structure

(Process Concept Diagram)

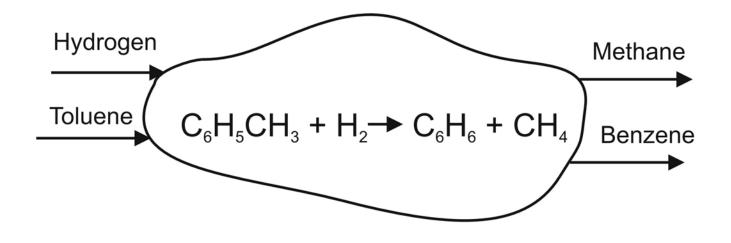
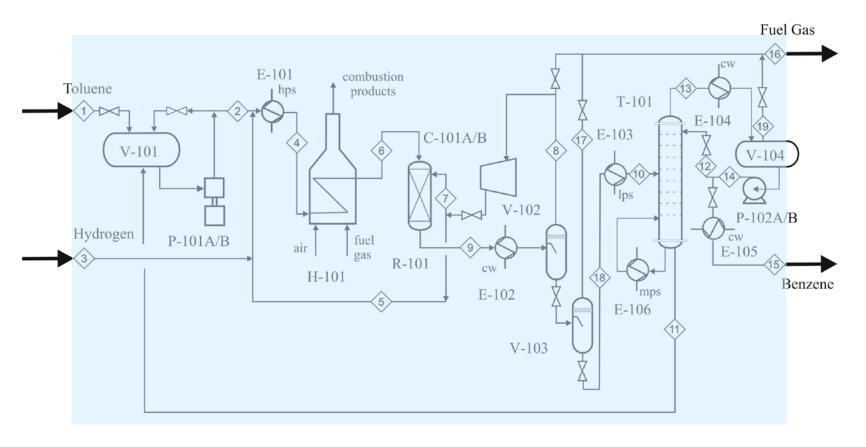
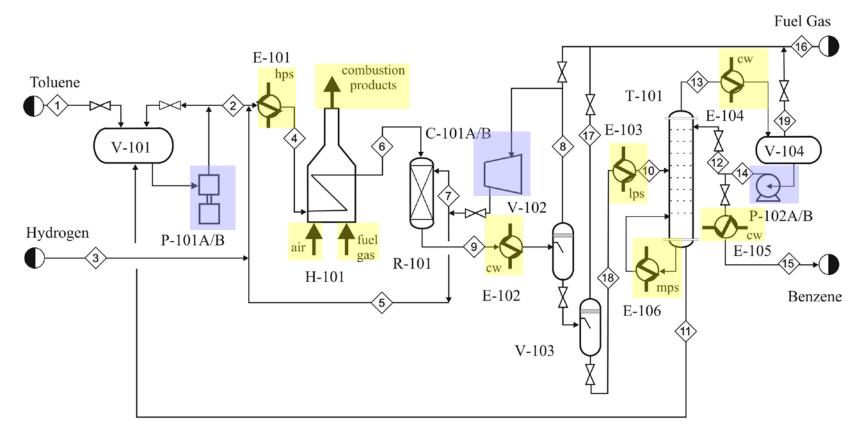



Figure 2.1: Input-Output Structure of Process Concept Diagram for the Toluene Hydrodealkylation Process


Input-Output on PFD

Input/Output Stream

Figure 2.2 Input Output Streams on Toluene Hydrodealkylation PFD

Input-Output – Utility Streams

Utility Stream

Figure 2.3: Identification of Utility Streams on the Toluene HDA PFD

Other Input – Output Issues

- Purify Feed ?
- Feed purity and trace components
 - Small quantities and "inerts" do not separate
 - Example
 - H₂ in feed contains CH₄
 - CH₄ does not react
 - so do not remove

- If separation of impurities is difficult...
 Do not separate
 - azeotrope (water and ethanol)
 - gases (requires high P and low T)

How would you remove CH_4 from H_2 ?

- If impurities foul or poison catalyst, **separate!**
 - Sulfur Group VIII Metals (Pt, Pd, Ru, Rh)
 - CO in platinum PEM fuel cells

Note: S and CO may be present in very small amounts (ppm)

- If impurity reacts to form difficult-to-separate material or hazardous product then separate
- Phosgene Example
 - $-CH_4 + H_2O \rightarrow CO + 3H_2$
 - $-CO + Cl_2 \rightarrow COCl_2$
 - Any H₂ \rightarrow HCl

- Impurity in large quantities then purify why?
 - A notable exception is air

Add Materials to Feed

• To stabilize products

- To enable separation/minimize side reactions
 - Anti-oxidants and scavengers
 - Solvents and catalysts

Inert Feeds

- Control exothermic reactions
 - Steam controls oxidation reactions (and may eliminate or modify explosion limits)
 - Reduces coke formation on catalyst
- Control equilibrium
 - Adding inerts shifts equilibrium to the right

e.g., styrene reaction

 $C_6H_5CH_2CH_3 \leftarrow \rightarrow C_6H_5CHCH_2 + H_2$

Profit Margin

- If \$ Products \$ Raw Material < 0,
- then do not bother to pursue this process, start looking for an alternate route

hydrodealkylation vs. disproportionation

 $C_{6}H_{5}CH_{3} + H_{2} \rightarrow C_{6}H_{6} + CH_{4}$ $2C_{6}H_{5}CH_{3} \rightarrow C_{6}H_{6} + C_{6}H_{4}(CH_{3})_{2} \qquad \text{Toluene used}$ more efficiently

 There are typically a variety of reaction paths available to a given product. Paths that use the cheapest raw materials (commodities) and produce fewest byproducts are preferred.

 Early in design process, decisions can be made based on the economic potential (EP) of the process, where EP is the difference in value between the products and the reactants. Selection of Reaction Path by Economic Potential (cont'd) 1. C_2H_2 + HCl $\rightarrow C_2H_3Cl$

- 2. $C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$ $C_2H_4Cl_2 + \Delta \rightarrow C_2H_3Cl + HCl$
- 3. $C_2H_4 + \frac{1}{2}O_2 + 2HCI \rightarrow C_2H_4CI_2 + H_2O$ $C_2H_4CI_2 + \Delta \rightarrow C_2H_3CI + HCI$

• Cost & MW data for mat'ls in Paths 1-3:

<u>Material</u>	MW	<u>value</u>
Acetylene	26	\$0.94/kg
Chlorine	71	\$0.21/kg
Ethylene	28	\$0.53/kg
HCI	36	\$0.35/kg
Vinyl chloride	62	\$0.42/kg

- Path 1 $C_2H_2 + HCI \rightarrow C_2H_3CI$
- Economic Potential for Path 1

 = (62 x 0.42) (26 x 0.94 + 36 x 0.35)
 = -\$11.0/kmol VCM

- Path 2 $C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$ $C_2H_4Cl_2 + \Delta \rightarrow C_2H_3Cl + HCl$
- Economic Potential for Path 2
 - = [(62)(0.42)+(36)(0.35)]-[(28)(0.53)+(71)(0.21)]
 - = \$8.89/kmol VCM
- Assuming HCl by product cannot be sold, =[(62)(0.42)]-[(28)(0.53)+(71)(0.21)]
 - = -\$3.71/kmol VCM

• Path 3

$\begin{array}{rcl} \mathsf{C_2H_4} + \frac{1}{2}\mathsf{O_2} + 2\mathsf{HCI} \rightarrow \mathsf{C_2H_4Cl_2} + \mathsf{H_2O} \\ & \mathsf{C_2H_4Cl_2} + \Delta \rightarrow \mathsf{C_2H_3CI} + \mathsf{HCI} \end{array}$

Economic Potential for Path 3
 = (62 x 0.42) - (28 x 0.53 + 36 x 0.35)
 = -\$1.40/kmol VCM

• Path 1 = -\$11.0/kmol VCM

Path 2 = \$8.89/kmol VCM
HCl unsaleable = -\$3.71/kmol VCM

• Path 3 = -\$1.40/kmol VCM

Recycle

- Since raw materials make up from 25 to 75% of total operating costs, should recover as much raw material as possible
- Exception is when raw materials are very cheap

For example, Air Separation