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Motivation: Augment Water 

Supply

� Droughts and water shortages

� Need to increase water supply 

by producing new water 

� Viable options for new water:

� Wastewater reuse

� Desalination of sea/brackish 

water



Need for Sustainable 

Technologies

� Develop water/wastewater 

treatment technologies that

• Use less energy

• Require less chemicals• Require less chemicals

• Have lower impact on the 

environment

� Osmotically-driven membrane 

processes, or forward osmosis 

(FO), may be a promising option



What is Forward Osmosis?
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Forward Osmosis Process
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Applications of 

Forward OsmosisForward Osmosis



Hydration Bags



Wastewater Treatment with 

Forward Osmosis
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Membrane Bioreactor (MBR) for 

Wastewater Treatment



Wastewater Reuse: Membrane 

Bioreactor (MBR)-RO System



Osmotic MBR-RO: Multiple 

Barrier Wastewater Treatment
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슬라이드 13슬라이드 13슬라이드 13슬라이드 13

M1 M1 M1 M1 This you can modifu as you wish.  See original paper...

May use similar style as previous slide
Meny Elimelech, 2009-07-31



Desalination by Forward Osmosis:

The Ideal Draw Solution

� Highly soluble solution to generate high 

osmotic pressure gradient

� Recoverable and recyclable� Recoverable and recyclable

� Soluble species should not pass through 

the membrane



NH3/CO2 Draw Solution
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The Ammonia-Carbon Dioxide FO 

Desalination Process

Energy

Input

Nature, 452, (2008) 260

Desalination, 174 (2005) 1-11.



High Water Recovery with FO

RO FO
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Osmotic Heat Engine
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NH3/CO2 Osmotic Heat Engine:

Closed Loop PRO

JMS, 305 (2007) 13-19; ES&T, 42 (2008) 8625-8629.  



Water Flux in Forward 

OsmosisOsmosis



Effect of Membrane Design on 

FO Water Flux
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SEM Cross Sections
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Forward Osmosis Membrane 
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Forward Osmosis Membrane 

Active Layer Backing Layer

– Asymmetry observed at high magnification

300 nm 300 nm
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Characterizing the Support Layer

ε
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Modeling Internal CP
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 Experimental

 Model
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Thickness, t

thin film (active layer)

Support 

layer

Characterizing the Support Layer
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Very High Water Fluxes
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Very High Membrane Power Density
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Fouling and Fouling 

ReversibilityReversibility



Organic Fouling Reversibility in 

Forward Osmosis
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Organic Fouling Reversibility
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Organic Fouling Reversibility: 

FO versus RO
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� RO – CA: CA membrane in RO mode (hydraulic pressure)

� RO – PA: Polyamide TFC membrane in RO mode



FO Exhibits Fouling Reversibility 

with a Wide Range of Foulants
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Concluding Remarks
Forward osmosis can be used as a 

standalone process or as part of an hybrid 

system (e.g. FO-RO)

Forward osmosis is less prone to fouling; may Forward osmosis is less prone to fouling; may 

use less prime (electric) energy 

Need to develop an appropriate membrane 

with low internal concentration polarization
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