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This subject teaches basic principles of solid state chemistry and shows how they 
can be used to describe the materials properties. In particular, the relationship 
between electronic structure, chemical bonding, and crystal structure is 
developed. The physical properties of the solid such as magnetic, electrical, 
optical, etc. are introduced and related to their electronic and crystal structure. 
Tentative topical coverage: Crystal structures, chemical bonding in solids 
(metallic, covalent, ionic), non-bonding electrons (d- and f-electrons, crystal field), 
electrical properties (metallic conductivity, semiconductivity, superconductivity, 
ionic conductivity, ferroelectricity, piezo electricity, optical properties (d- and f-
electrons) and magnetic properties. 
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Some of the physical properties of solid state materials are determined by three 
principal factors:

1 – The properties of the constituent atoms (masses, atomic numbers, electronic 
configurations, etc)

2 – The local interactions of atoms with each other in the solid state (i.e. the 
nature of the bonding and the resulting nearest-neighbor configurations of atoms)

3 – The arrangement of atoms in space to form a three dimensional solid

As a example, just by considering the nature of the bonding in solids its is 
possible to understand some of their basic macroscopic properties

Black board presentation 
(Notes pages 1-3)

The solid state is based on strong bonds:

Strong bonds: metallic, covalent and ionic

Weak Bonds: hydrogen, Van der Walls



Structural Chemistry
For solid-state structures, there exists no systematic nomenclature which allows us to specify 
structural facts. One manages with the specification of structure types in the following manner: 
‘magnesium fluoride crystallizes in the rutile type’, which expresses for MgF2 a distribution of Mg and F 
atoms corresponding to that of Ti and O atoms in rutile.

Quantitative specifications are made with numeric values for interatomic distances and angles. The 
interatomic distance is defined as the distance between the nuclei of two atoms in their mean positions 
(mean positions of the thermal vibration).



The coordination number (c.n.) and the coordination polyhedron serve to characterize the immediate 
surroundings of an atom. The coordination number specifies the number of coordinated atoms; these 
are the closest neighboring atoms

However, it is not always clear up to what limit a 
neighboring atom is to be counted as a closest neighbor

The coordination polyhedron results when the centers 
of mutually adjacent coordinated atoms are connected 
with one another. For every coordination number typical 
coordination polyhedra exist



Larger structural units can be described by connected polyhedra. Two polyhedra can be joined by a 
common vertex, a common edge, or a common face. The common atoms of two connected polyhedra are 
called bridging atoms. In face-sharing polyhedra the central atoms are closest to one another and in 
vertex-sharing polyhedra they are furthest apart



In a crystal atoms are joined together to form a larger network with periodic order in three 
dimensions. The spatial order of the atoms is called the crystal structure, which should no be 
confounded with the crystal lattice

The crystal lattice represent a three-dimensional order of points; all points of the lattice are 
completely equivalent and have the same surroundings

The crystal lattice is generated by 
periodically repeating a small 
parallelepiped in three dimensions without 
gaps. The parallelepiped is the unit cell

The unit cell is defined by three basis vectors (a, b, c). -> The crystal lattice is the complete set of al 
linear combinations t = ua + vb +wc (with u,v,w all positive and negative integers)

The length a, b, c and the angles α, β, γ between them are the lattice parameters



There is no unique way to chose the unit cell for a given crystal structure -> there is a set of 
conventions for the selection of the unit cell



A unit cell having the smallest possible volume is called a primitive cell

However, not always a primitive cell is chosen, but instead a centered cell, because of reasons of 
symmetry according to rule 1

The specification of the lattice parameters and the positions of all the atoms contained in the unit cell 
is sufficient to characterize all the essential aspects of the crystal structure



A unit cell can only contain an integral number of atoms. Z is the number of formula units per unit cell

The position of an atom in the unit cell is specified by a set of atomic coordinates (x, y, z = 0.0 - <1.0), 
referring to the coordinate system that is defined by the basis vectors of the unit cell



The most characteristic feature of any crystal is its symmetry. It not only serves to describe 
important aspects of a structure, but is also related to essential properties of a solid

Example: Quartz crystals exhibit piezoelectric properties; they develop an electric potential upon the 
application of mechanical stress

Quartz would not exhibit the piezoelectric effect if it did not have the appropriate symmetry

The requirement for piezoelectricity is a non-centrosymmetric crystal class

Symmetry Operations and Symmetry Elements

Definition: A symmetry operation transfers an object into a new spatial position that cannot be 
distinguished from its original position

1 – Translation: Shifts in a specific direction by a specified length. A translation vector corresponds to 
every translation.

As vector a, b, and c the three basis vectors that also serve to define the unit cell are chosen

Any translation vector t in the crystal is expressed as the vectorial sum of three basis vectors, 
t = ua + vb +wc (with u,v,w all positive and negative integers)



2. Rotation about some axis by an angle of 360/N degrees. The symmetry element is an N-fold rotation 
axis (N an integer) 

After having performed a rotation N times the object has returned to its original position

Every object has infinitely many axes with N=1, since an arbitrary rotation by 360° return the object to 
its original position. -> The symbol for onefold rotation is used for objects that have no symmetry other 
than translational symmetry



3. Reflections. The symmetry element is a reflection plane

4. Inversion. “Reflection” through a point. This point is the symmetry element and is called inversion 
center or center of symmetry



5. Rotoinversion. The symmetry element is a rotoinversion axis (or inversion axis)

This refers to a coupled symmetry operation which involves two motions: a rotation through an angle 
360/N degrees followed by an inversion at a point located on the axis

If N is an even number, the inversion axis automatically contains a rotation axis with half the 
multiplicity. If N is an odd number, automatically an inversion center is present



6. Screw rotation. The symmetry element is a screw axis

It can only occur if there is a translation symmetry in the direction of the axis

It result when a rotation of 360/N degrees is coupled with a displacement parallel to the axis

The Hermann-Mauguin symbol is NM; N expresses the rotational component and the fraction M/N is the 
displacement component as a fraction of the translation vector



7. Glide Reflection. The symmetry element is a glide plane

It can only occur if there is a translation symmetry parallel to the plane

At the plane, reflection are performed, but every reflection is coupled with an immediate displacement 
parallel to the plane

The Hermann-Mauguin symbol is a, b, c, n, d or e, the letter designate the direction of the glide 
refereed to the unit cell. a, b and c refer to displacement parallel to the basis vectors a, b, and c, the 
displacements amounting to ½a, ½b and ½c, respectively.

The glide planes n and d involve displacements in a diagonal direction by amounts of ½ and ¼ of the 
translation vector in this direction, respectively

e designates two glide planes in one another with two mutually perpendicular glide directions





Point groups: Possible combinations of symmetry operations, excluding translations, are called point 
groups

This term expresses the fact that any allowed combination has one unique point (axis or plane) which is 
common to all the symmetry elements

When two symmetry operations are combined, a third symmetry operation can result. For example, the 
combination of a two fold rotation with a reflection at a plane perpendicular to the rotation axis 
automatically results in an inversion center at the site where the axis crosses the plane

It makes no difference which two of the three symmetry operations are combined (2, m or 1⎯), the 
third one always results

A point group symbol consists of a listing of the symmetry elements that are present according to some 
rules

For more information on the 32 crystallography point groups cf. Inorganic Structural Chemistry by
Ulrich Müller, for example. 





Space Groups Types: the space group type of a crystal is a description of the symmetry of the crystal. 
There are 230 types

Symmetry axes can only have the multiplicities 1, 2, 3, 4 or 6 when translational symmetry is present in 
three directions. If, for example, fivefold axes were present in one directions, the unit cell would have 
to be a pentagonal prism. Space cannot be filled, free of voids, with the prisms of this kind

Due to the restriction to certain multiplicities, symmetry operations can only be combined in a finite 
number of ways in the presence of three dimensional translation symmetry

The Hermann-Mauguin symbol for a space group type begins with a capital letter P, A, B, C, F, I or R 
which expresses the presence of translational symmetry in three dimensions and the kind of centering

The letter is followed by a listing of the other symmetry elements according to the same rules as for 
point groups

Example of space group type 
symbols and their meaning



The different sets of positions in crystals are called Wyckoff positions. They are listed for every space 
group type in International Tables of Crystallography

Example for space group type Nr. 
87, I4/m

The Wyckoff symbol is a short designation; it consists of a numeral followed by a letter, for example 8 
f . The cipher 8 states the multiplicity, that is, the number of symmetry equivalent points in the unit 
cell. The f is an alphabetical label (a, b, c, etc.) according to the sequence of the listing of the positions; 
a is always the position with the highest site symmetry.



A well-grown crystal exhibits a macroscopic symmetry which is apparent from its faces; this symmetry 
is intimately related to the pertinent space group

The ideal symmetry of the crystal follows from the symmetry of the bundle of normals perpendicular to 
its faces

This symmetry is that of the point group resulting from the corresponding space group if translational 
symmetry is removed, screw axes are replaced by rotation axes, and glide planes are replaced by 
reflection planes.

In this way the 230 space-group types can be correlated with 32 point groups which are called crystal 
classes

A special coordinate system defined by the basis vectors a, b and c belongs to each space group. 
Depending on the space group, certain relations hold among the basis vectors; they serve to classify 
seven crystal systems



Then the types of lattice are combined to the 7 crystal systems, the 14 possible Bravais are produced



Miller indices are a notation system in crystallography for planes and directions in crystal lattices

A family of lattice planes is determined by three integers h, k, and l, the Miller indices. (hkl) denotes a 
plane that intercepts the three points a/h, b/k, and c/l, with the unit cell edges a, b and c

Interplanar spacing is the perpendicular distance dhkl between parallel planes of indices (hkl)



The Effective Size of Atoms

The electron density in an atom decreases asymptotically towards zero with increasing distance from 
the atomic center. An atom therefore has no definite size

When two atoms approach each other, interaction forces between them become more and more 
effective



At some definite interatomic distance attractive and repulsive forces are balanced. This equilibrium 
distance corresponds to the minimum in a graph in which the potential energy is plotted as a function of 
the atomic distance

The equilibrium distance that always occurs between atoms conveys the impression of atoms being 
spheres of a definite size. In fact, in many cases atoms can be treated as if they were more or less 
hard spheres

Since the attractive forces between the atoms differ depending on the type of bonding forces, for 
every kind of atom several different sphere radii have to be assigned according to the bonding types. 
From experience we know that for one specific kind of bonding the atomic radius of an element has a 
fairly constant value



We distinguish the following radius types: Van der Waals radii, metallic radii, several ionic radii 
depending on the ionic charges, and covalent radii for single, double and triple bonds. Furthermore, the
values vary depending on coordination numbers: the larger the coordination number, the bigger is the 
radius.

In a crystalline compound consisting of molecules, the molecules usually are packed as close as possible, 
but with atoms of neighboring molecules not coming closer than the sums of their VAN DER WAALS 
radii. The shortest commonly observed distance between atoms of the same element in adjacent 
molecules is taken to calculate the Van der Waals radius for this element.



Atomic radii in metals

The degree of cohesion of the atoms in metals is governed by the extent to which occupation of bonding 
electron states outweighs antibonding states in the electronic energy bands

Metals belonging to groups in the left part of the periodic table have few valence electrons; the 
numbers of occupied bonding energy states are low.

Metals in the right part of the periodic table have many valence electrons; a fraction of them has to
be accommodated in antibonding states. In both cases we have relatively weak metallic bonding

When many bonding but few antibonding states are occupied, the resulting bond forces between the 
metal atoms are large. This is valid for the metals belonging to the central part of the block of 
transition elements

Atomic radii in metals therefore 
decrease from the alkali metals up 
to the metals of the groups six to 
eight, and then they increase



Covalent Radii

Covalent radii are derived from the observed distances between covalently bonded atoms of the same 
element

In the same way we calculate the covalent radii for chlorine (100 pm) from the Cl–Cl distance in a Cl2
molecule, for oxygen (73 pm) from the O–O distance in H2O2 and for silicon (118 pm) from the bond 
length in elemental silicon

If we add the covalent radii for C and Cl, we obtain 77 + 100 =177 pm; this value corresponds rather well
to the distances observed in C–Cl compounds

However, if we add the covalent radii for Si and O, 118 + 73 = 191 pm, the value obtained does not agree 
satisfactorily with the distances observed in SiO2 (158 to 162 pm)

Generally we must state: the more polar a bond is, the more its length deviates to lower values 
compared with the sum of the covalent radii

Empirical corrections taking into account the polar character of the bond have been proposed



The shortest cation–anion distance in an ionic compound corresponds to the sum of the ionic radii. This 
distance can be determined experimentally. However, there is no straightforward way to obtain values 
for the radii themselves

The commonly used values for ionic radii are based on an arbitrarily assigned standard radius for a 
certain ion. In this way, a consistent set of radii for other ions can be derived

Ionic Radii

Ionic radii can also be used when considerable covalent bonding is involved. The higher the charge of a 
cation, the greater is its polarizing effect on a neighboring anion, i.e. the covalent character of the 
bond increases

When covalent bonding is involved, the ionic radii depend to a larger extent on the coordination number. 
For instance, increasing the coordination number from 6 to 8 entails an increase of the ionic radii of 
lanthanoid ions of about 13 %, and for Ti4+ and Pb4+ of about 21 %. An ionic radius decrease of 20 to 35% 
is observed when the coordination number of a transition element decreases from 6 to 4

The ionic radii listed in tables (cf. next slide) in most cases apply to ions which have coordination 
number 6. For other coordination numbers slightly different values have to be taken. For every unit by 
which the coordination number increases or decreases, the ionic radius increases or decreases by 1.5 to 
2 %. For coordination number 4 the values are approximately 4 % smaller, and for coordination number 8 
about 3 % greater than for coordination number 6. The reason for this is the mutual repulsion of the 
coordinated ions, the effect of which increases when more of them are present.




